Abstract of “Explaining Reinforcement Learning Agents by Policy Comparison” by Jun Ki Lee, Ph.D.,
Brown University, May 2022.

Reinforcement learning (RL) techniques have led to remarkable results in challenging domains such as
Atari games, Go, and Starcraft, suggesting that practical applications lie just over the horizon. Before
we can trust decisions made by RL policies, however, we need more visibility into how they work. To
explain a reinforcement-learning agent, I propose extending the power of counterfactual reasoning to
sequential domains by comparing its policy to a baseline policy at a set of automatically identified
decision points. My novel method for selecting important decision points considers a large pool of
candidate states and decomposes the agent’s value into the reward obtained before vs. after visiting
that state. A state is considered important if the accumulated reward obtained after switching to the
baseline policy is most different from that obtained after continuing its policy. The engine of this
computation is a decomposition of occupancy frequencies of an agent’s policy that characterize the
whereabouts of an agent before and after the policy change. Structuring the policy evaluation in this
way provides a causal account for its outcome. I have demonstrated the approach on a set of standard

RL benchmark domains, providing explanations using the decomposed occupancy frequencies.

Building an Explainable Reinforcement Learning Agent

Jun Ki Lee

Contents

[List of Tables|

|List of Figures|

(1 _Introduction|

|2 Backgrounds|

2.1 Reinforcement Learning| Lo
[2.2 Explainable Artificial Intelligence (XAI)| o L.
2.2.1 Interpretability and Explammability|
2.2.2 Causality] e
2.2.3 Explanations|o oo

[3 Difficulty in Explaining a Deep RL Agent|

3.1 The role of generalization in explaining | o0,

3.2 Recasting generalization| oL Lo
8.3 Methodologyl
3.3.1 Oft-Policy States|

4.3.1 Occupancy Frequency and Value Decomposition|

4.3.2 Contrasting two different policies|

4.4 Experiment and Evaluation| oo Lo

S Ot o W NN

J

11
11
12
15
16

CONTENTS

4.4.1 Metricsl e e e

d42 GudWorldl e

4.5 Conclusionl e
B1b 0 D

List of Tables

3.1 TAR and VEE for all of the trained agents and experimental configurations.|. 14

List of Figures

2.1 A causal diagram showing Y causes X.|.o oL, 5
3.1 Examples ot on-policy, off-policy, and unreachable states in GRIDWORLD.| 11
[3.2 Average total accumulated reward (TAR) from various unreachable states for each of |
the trained agents.| 13

13.3 ©(s) and v, (s) for replicated trajectories for all experiments.. 17
8.4 TAR and average VEE for control, extrapolation, and interpolation experiments.| . . 18
3.5 Smoothed empirical distributions of the distances between the test points of the |
extrapolation experiments and the training data.| 0L 19

B.6 t-SNE plot of asinglerun.,|. o o 20
3.7 Saliency Maps of AMIDAR.] e 21
4.1 GridWorld policies. (a) An optimal policy mo with R(-,-,s) = —0.04, Vs € S,s ¢ Sr. (b) |
Shortest path policy 71 with the same R. (¢) A diagram showing the slip probability of an |
V723 V[P 26
4.2 The comparison of three evaluation metrics. (a) Q-value difference. (b) Value difference. (c) |
Impact using anterior and posterior occupancy frequencies. | 26

4.3 The anterior and posterior occupancy frequencies of the state s = (1,0) (a) L:9"°(s). (b) |
M™Y. () M0 (s). | o oo 26

Chapter 1

Introduction

Thesis Statement An attempt to generate explanations only using value and policy networks for
reinforcement learning agents shows little success due to both its nature and the algorithms’ inability
to generalize. Judea Pearl suggests that causality plays an essential role in the human explanation.
By adopting structural causal models within sequential decision making, learned agents can be better
explained to human users.

With the invention of fast graphical processing units (GPUs) [35] in combination with deep learning
techniques [33] [32] [13], there has been rapid progress in reinforcement learning. Learned agents can
play Atari games at a superhuman level [43] [10, 11] and win human experts in games like Go, Poker,
and Starcraft [64] [45] [72]. However, there is still little understanding of how these systems work from
the perspectives of general audiences other than the experts. Since this thesis is especially interested
in sequential decision making systems which are learned by reinforcement learning algorithms, I
revisit the current developments in this area and investigate the meaning of explainable AT (XAI) for
explaining the reinforcement learning agents.

The following part consists of my work relating to probing the generalization capacity of a deep
RL algorithm called deep Q networks (DQN) [77]. Investigating what happens inside a deep artificial
neural network after its training can be considered as a post-hoc method. Moreover, the semantic
state perturbations are especially designed to promote counterfactual reasoning in explaining the
learned agent. The results shows that how the algorithm genuinely fails to generalize with respect to
these semantic perturbations in its input states, thus disabling the counterfactual reasoning between
actual states and imaginary states. Given the lack of evidence that high-level explainable structures
are found within the network, users are still left with weak insights on how the agents work.

According to Pearl [52], causality play an essential role in human explanation. I introduce a
structural causal model as a mean to enhance explainability of a sequential decision making process.
In my proposed work, I will develop a method for an agent to learn to make decisions by discovering
the underlying causal structures in its environment, creating a “causal” reinforcement learning agent.
I will then show that the behavior of such an agent can be meaningfully explained, leading to more

trustworthy and transparent Al

Chapter 2

Backgrounds

This chapter defines and describes underlying major concepts behind the main idea of this thesis.
First, it explains what reinforcement learning is and the definition of Markov decision processes. The
descriptions of most recent deep versions of reinforcement learning techniques are followed. Second,
it tries to disambiguate the meaning of explainable AI and investigates recent related work in the
context of supervised learning and reinforcement learning. Lastly, causality is introduced due to its

importance in human explanations and studies of explanations are discussed.

2.1 Reinforcement Learning

What distinguishes reinforcement learning from machine learning is that it learns by acting in an
environment and receiving its reward in a delayed manner [67]. Its decision making are in general
modeled using Markov Decision Processes.

A Markov Decision Process (MDP) is defined by 4-tuple (S, A, T, R). From all possible states S
in an environment, the agent starts from a state sg € Sy from a set of possible start states Sy C S.
A contains all possible actions that an agent can take in each time step. The transition function
T :S5 A — S maps a state and action pair to its next state. The reward function R : S — R
determines the reward an agent receives when it encounters a state. The overall objective of an agent
is to maximize the accumulated sum of rewards.

A policy, 7 : s = a, is a mapping from states to actions, fully characterizing the behavior of an
agent. The Q-value of a state-action pair, ¢ (s, a), is the expected return for following 7 from s after
taking action a, E, [2211 Y R(st1r) | st = s,as = a]7 where 7y is the discount rate. The value of a
state, v.(s), is the expected return by following 7 from s, ¢-(s,m(s)). The optimal policy 7* is the
policy 7 that maximizes v, (s),Vs € S, which is equivalent to maximizing ¢, (s,a)Vs,a € S, A.

A widely used class of methods for specifying policies in RL is to construct an approximation of
the value function represented as a function from a state—action pair to a value, ¢(s,a), and then
select the action that maximizes (s, a) at each timestep [67]. Deep Q-networks (DQNs) are one such

method, using multi-layer artificial neural networks as a nonlinear function approximation for ¢(s, a)

2

[43]. Another widely used class of method for specifying polices is to set a parameterized function,
mg(s,a), that can be used to choose an action without looking up a value function. The only criteria
for the parameterized function is that it needs to be differentiable with respect to the parameters in
order to be trained with the policy gradient algorithm [68]. If the action space is continuous, the
function can directly output actions and for the discrete action spaces the parameterized numerical

preferences, hg(s,a) € R, can be learned and used to give the actions with the highest preferences
ehe(s,a)

Deep RL algorithms generally require a differentiable state-value parameterization function,

the highest probabilities by utilizing the exponential soft-max distribution, 7 (s,a) =

9(s,0,) and a differentiable policy parameterization function, 7 (s, a,), is additionally required for
policy gradient algorithms [67]. The common testbed for the following algorithms is the Arcade
Learning Environment (ALE) [4] which has boasting 55 ATARI games. Two games were later added
and a task learning all 57 games in one network structure is called, Atari-57. The initial DQN
algorithms used prioritized experience replay, double Q learning, and dueling networks [58], [70] [73].
Later algorithms use distributional value function citebellemare2017distributional, noisy DQN, and
n-step bootstrapping. The combination of these algorithm is known to show much higher performances
[21]. The distributed version of these algorithms such as Ape-X, Gorilla, and R2D2[24} [47] show much
improved performances than the single threaded counterparts. Compared with the above value-based
algorithms, the policy gradient algorithms such as A3C [44], TRPO [61], ACER [74], ACKTR [7§],
PPO [62], IMPALA [I0], and SEED [I1] use a structure called actor critic which maintains a value
function approximation to be consulted to learn the policy function. The actor critic method all use
distributed actors to play multiple games simultaneously whether or no it is single or multi threaded.
Since policy-based methods can handle continuous action spaces, These set of algorithms are also
tested on the environments where actions can be given as a set of vector with real numbers [6].
Model-based deep RL algorithms are soon followed after the seminal DQN work [43]. Solving Atari
by learning a full model of a world still remain inferior to the model-free based method mentioned
above [I7, 26]. The predictron did learn to predict values without actions [65]. The model still takes
a full MDP, but its representation can be an internal hidden layer values of a deep network. TreeQN
[12] and value interation network [69] learns an abstract and local MDP model respectively and take
tree-structure and value interation into the deep neural networks. Value prediction networks learn an
MDP grounded on real actions while its representations are not the original inputs [50]. MuZero [60]
is a successor to the value prediction networks algorithm in that it learns an MDP with real actions

and also learns reward and values functions together. It has score the highest in the Atari-57 task.

2.2 Explainable Artificial Intelligence (XATI)

As our artificial intelligence systems are more widely used in our society, the interests in explaining
these systems grew rapidly especially in the areas of decision making systems and supervised learning
systems [14) [41], [46] [42] [36] 54, [0 22| [57]. There is yet no general consensus in what explainable AT

is and researchers are interchangeably using two terms, ezplainability and interpretability. In this

paper, explainability will be regarded equally as interpretability.

2.2.1 Interpretability and Explainability

Lipton [36] provides the desiderata of the interpretable machine learning (ML): trust, causality,
transferability, informativeness, and fair and ethical decision making. Lipton [36] also distinguishes
two properties of the interpretable ML: transparency and post-hoc explanations.

Transparency in this context refers to asking a question how does a model work? A model
here can be your choice of machine learning models such as deep neural networks, decision trees,
and linear regression. This requires the knowledge of how a specific choice of machine learning
model work. Transparency can be achieved by looking a model at the level of an entire model
(simulatability), at the level of subcomponents (decomposability), or at the level of an algorithm
(algorithmic transparency).

The post-hoc explanations are given to users by extracting information from learned models while
a given model is assumed as a blackbox. Such explanations include natural language explanations,
visualization of learned representations, and explanations by example. Miller [41] adopts exzplanations
are post-hoc interpretability. Miller [41] and Biran and Cotton [5] also makes a distinction between
explanations and justifications. Justifications can explain why a given model is making good choices,
but cannot explain individual decisions.

In most of cases, deep neural networks are considered to be less transparent due to its choice
of network parameters in ad-hoc and heuritic manners despite the fact that all of its numerical
calculation processes are fully uncovered [54]. There are numerous work in building alternative models
sitting besides the original model to explain deep neural networks in a more interpretable way. Such
examples include a linear proxy model called LIME [53] and a decision tree method called DeepRED
[81]. Visualizing learned features in deep neural networks at different levels of their hierarchies has
already been examined by many researchers in the field. Researchers have seen signs of textures,
shape patterns, and parts of objects [48]. Kim et al. [30]’s work is an early attempt to systematize
the process of finding these features through concept activation vectors (CAV) and translating into
meaning explanations. In terms of generating images from text inputs using a Generative Adversarial
Network (GAN), Hong et al. [23] used a semantically hierarchical network structure instead of a
end-to-end network for the network’s transparency. To better explain deep neural networks decision
making, pixel level visualization using heatmaps, sometimes called saliency maps, and semantic
segmentation have also been used extensively [54].

There is much less work in explaining a RL agent. Wang et al. [73], Greydanus et al. [15], and
Weitkamp et al. [75] developed methods to display saliency maps which is claimed to show the focus
of attention in a learned deep neural network. Anderson et al. [I] combined saliency map with the
reward decomposition method and conducted a user study to verify human users’ understanding
of the given information by checking a user’s ability to predict the next outcomes. Mnih et al. [43]
visualized the distribution of the internal representation values with respect to the distances between

input vectors using the t-SNE method.

O—

Figure 2.1: A causal diagram showing Y causes X.

2.2.2 Causality

Before jumping into explaining explanations, I will first examine what causality is in order to provide
the basis for the latter discussion of explanations.

Based on Hume’s regularity theory [25], if one type of events always occurs before the other, there
is a causal relationship between two types of events. However, like the fact that a rooster crows
before sunrise does not indicate a rooster is the cause of a sunrise, a mere association between two
events is not sufficient to claim that one event is the cause of the other event. To overcome this
situation, Pearl and Mackenzie [52] suggests that causal reasoning should be performed on at least
three levels: association, intervention, counterfactuals. Pearl named a structure containing these
three levels the Ladder of Causation.

The first ladder is the association ladder. This level of reasoning can be understood by seeing and
observing. Most of the current statistics and supervised learning techniques fall into this category.
The reasoning at this level of the ladder can answer questions like how are two variables are related?
and How would seeing an event X can change my belief in event Y?

The second ladder is the intervention ladder. Activities relating to this level of reasoning is doing
and intervening. The causal reasoning at this level can answer questions like what is the difference
in the expected outcome when I do A instead of B? What action is required to make Y happen?
Reinforcement learning and learning causal Bayesian models fall into this category according to
Bareinboim [3].

The third and highest ladder is the counterfactuals ladder. Imagining, retrospection, and un-
derstanding activities fall into this category. What if and why questions are in fact counterfactual
questions. Counterfactual cases are the hypothetical events that does not cause an event which is to
be explained [41I]. T will later disambiguate this with contrastive explanations.

Halpern and Pearl [18] formally defines an actual cause of an event X = x as a set of event E (an

in dividual variable is expressed as a form of Y = y) if the following criteria holds.

1. In a real situation, both X and F have to be true.
2. If E had some counterfactual value, then the event X = x would not have been true.

3. E has to be minimal. This means that E does not contain any irrelevant variable.

Causal relationships can be represented as a graph, each node represents variables and a directed
edge from node Y pointing to node X means Y causes X as in Figure

In Rubin [55]’s definition, a potential outcome of a variable Y when X is assigned with value x is
Yx—.. A probability of a potential outcome of Y holding a specific value y when X is holding value z
is defined as P(Yx—, = y). Using this notation, both the probability of necessity and sufficiency can

be defined [52]. When the goal is to prove the causation between X and Y, both the probabilities of
necessity (PN) and sufficiency (PS) are defined as follows:

e Probability of Necessity (PN): P(Yx—o =0/X =1,Y =1).
e Probability of Sufficiency (PS): P(Yx=1 =1|X =0,Y =0).

When there are more than one causes for a single outcome, comparison of these two values for
two different causes can give us insights on which cause is more important than the other. The
probability of necessity tells us that when the cause is not present, how likely the expected event
do not occur given the cause led to the desired outcome in the real situation. The probability of
sufficiency tells us that when the cause is present, how likely the outcome is expected to occur given
that the lack of cause led to no desired outcome. Pearl and Mackenzie [52] states that this mechanism
can play an important role when determining the most probable cause in autonomous systems.

Lastly, Pearl and Mackenzie [52] introduces do-operator to properly acknowledge intervention
in probabilisties. While P(X|Y') only captures mere association between two events, P(X |do(Y))

represents an intervention on Y to influence X and also inhibition of all other effects directing to Y.

2.2.3 Explanations

Pearl and Mackenzie [52] claims that the causation plays an essential role in human explanation.
Every time when we encounter our world we always ask questions such as why events happen in
particular ways, why objects have certain properties, and why people behave in such a way [37].
Lewis [34] defines explanation as to provide information about an event’s causal history.

According to Gilpin et al. [14], a good explanation can be dependent on the question and pays
particular interests to two types of why-questions: why and why-should. He also claims that a good
explanation in general come from a good inference, but it can also be the use of abductive reasoning:
finding all possible causes of an effect and finding the best one. The extensive use of Pearl and
Mackenzie [52]’s Ladder of Causation can be turned into answering questions like what happened,
how it happened, and why it happened at each respective level.

Lombrozo [37] notes that explanation is a product and a process at the same time. Gilpin et al.
[I4] argue that there are two processes and a product in explaining: a cognitive process, a product,
and a social process. If explanation is a product, then explaining has to go thorugh both a cognitive
and social processes. In this thesis I focus on the cognitive process and the product first in order
to generate explanations and then for the future work seek a possibility to consider explanations
as a tool for social communication. In terms of generating explanations directly from a policy of a
learned agent, Hayes and Shah [20] developed a systematic algorithm to generate explanations for

agents’ decisions.

Chapter 3

Difficulty in Explaining a Deep RL
Agent

Portions of this chapter have appeared in the earlier paper, "Measuring and Characterizing
Generalization in Deep Reinforcement Learning” [TH] with Sam Witty, Emma Tosch,

Akanksha Atrey, Michael Littman, and David Jensen.

3.1 The role of generalization in explaining

As discussed in the background chapter, the main key in explaining a learned agent is within its ability
to reason in counterfactual situations and their outcomes. In this work, I and my colleagues have
developed a method to perturb input states in a semantically meaningful way to create counterfactual
situations. Although the true intention of this setup is to see how an agent behaves in counterfactual
situations in order to explain the rationale behind its actions, the performance of an agent after
perturbation is far too inferior to that of non-perturbed situations. I claim that this phenomena is
mainly due to the lack of generalization in current Deep RL training method.

Deep RL methods have achieved remarkable performance on challenging control tasks. Obser-
vations of the resulting behavior give the impression that the agent has constructed a generalized
representation (a semantic representation) that supports insightful action decisions. We re-examine
what is meant by generalization in RL, and propose several definitions based on an agent’s perfor-
mance in on-policy, off-policy, and unreachable states. We propose a set of practical methods for
evaluating agents with these definitions of generalization. We demonstrate these techniques on a
common benchmark task for deep RL, and we show that the learned networks make poor decisions
for states that differ only slightly from on-policy states, even though those states are not selected
adversarially. Taken together, these results call into question the extent to which deep Q-networks
learn generalized representations, and suggest that more experimentation and analysis is necessary

before claims of representation learning can be supported.

7

Prior Work on Generalization in RL. Generalization has long been a concern in RL [66].
Somewhat more recently, Kakade [27] provided a theoretical framework for bounding the amount of
training data needed for a discrete state and action RL agent to achieve near optimal reward. Nouri
et al. [49], Zhang et al. [80] discuss how to apply the idea of a training/testing split from supervised
learning in the context of offline policy evaluation with batch data in RL. Generalization has been
cast as avoiding overfitting to a particular training environment, implying that sampling from diverse
environments is necessary for generalization [76, 80]. Other work has focused on generalization
as improved performance in off-policy states, a framework much closer to standard approaches in
supervised learning. Techniques such as adding stochasticity to the policy [19], having the agent take
random steps, no-ops, steps from human play [47], or probabilistically repeating the agent’s previous
action [39], all force the agent to transition to off-policy states.

These existing methods diversify the training data via exposure to on-policy and off-policy states,
but none discuss generalization over states that are logically plausible but unreachable. The prior
focus has been on generalization as a method for preventing overfitting, rather than as a capability
of a trained agent.

Generalization vs. Memorization. Generalization is often contrasted with memorization and
there have been recent efforts to understand their respective roles in deep learning. For instance, with
an operationalized view of memorization as the behavior of deep networks trained on noise, Arpit
et al. [2] showed that the same architectures that memorize noise can learn generalized behaviour
on real data. By contrast, we assess generalization via unreachable states, which differs from this
operationalized view of memorization. For instance, Zhang et al. [79] empirically demonstrated the
capacity of deep networks to memorize an entire dataset and fit random data, questioning their
generalization ability. Extending their work, with an operationalized view of memorization as being
the behavior of deep networks trained on noise, Arpit et al. [2] showed that deep networks do not just
memorize but the optimization process detects patterns and is content-aware. Most recently, Cohen
et al. [7] empirically showed for the first time that these two concepts are in fact complementary.
In contrast, we focus on generalization via interpolation and extrapolation, which differs from this
operationalized view of memorization.

Adversarial Attacks on Deep Networks. While related to adversarial attacks on deep
networks, this work differs in two important ways: (1) interventions are not adversarially selected
and, (2) interventions operate on latent states, not on the agent’s perception. Mandlekar et al. [40]
attempted to make agents robust to random high-level perturbations on the input. That is, for
the domain they explore, MuJoCo physics simulator, the inputs are at the resolution of human-
understandable concepts. Yet, this work does not address questions of alignment between meaningful

real world high-level perturbations and learned representations by the network.

3.2 Recasting generalization

Using existing notions of generalization, such as held-out set performance, is complicated when applied
to RL for two reasons: (1) training data is dependent on the agent’s policy; and (2) the vastness
of the state space in real-world applications means it is likely for novel states to be encountered at
deployment time.

One could imagine a procedure in RL that directly mimics evaluation on held-out samples by
omitting some subset of training data from any learning steps. However, this methodology only
evaluates the ability of a model to use data after it is collected, and ignores the effect of exploration
on generalization. Using this definition, we could incorrectly claim that an agent has learned a
general policy, even if this policy performs well on a very small subset of states. Instead, we focus on
a definition that encapsulates the trained agent as a standalone entity, agnostic to the specific data it

encountered during training.

Generalization via State-Space Partitioning. We partition the universe of possible input
states to a trained agent into two sets, according to how the agent can encounter them following its
learned policy 7 from sg € Sy. Here, II is the set of all policy functions, and «, J§, and S are some
small positive values close to 0. We can think of § and § as thresholds on estimation accuracy and
optimality performance. The set of reachable states, Sieachable, 1S the set of states that an agent

encounters with probability greater than a by following any 7’ € HE|

Definition 1 (Interpolation). An RL agent has high interpolation performance, Gy, if § > |(s,a) —
¢r(s,a)| and B > ¢*(s,a) — ¢z (s,a), Vs € Som,a € A. The set of off-policy states, Sog, is defined as

Sreachable \ Son~

Definition 2 (Extrapolation). An RL agent has high extrapolation performance, Gg, if § >
lG(s,a) — qr(s,a)| and B > ¢*(s,a) — ¢z (s,a), Vs € Sunreachable, @ € A. The set of unreachable states,

Sunreachablea is defined as S \ Sreachable~

Note that S only includes states that are in the domain of T'(s,a, s’). In other words, specification
of the transition function implicitly defines S, and by extension Synreachable- Lhis definition is
particularly important in the context of deep RL, as the dimensionality of the observable input
space is typically much larger than |S|. If we wish to demonstrate that an agent generalizes well for
AMIDAR, T'(s, a, s") would need to be well defined with respect to latent state variables in the AMIDAR
game, such as player and enemy position. If we wish to demonstrate that an agent generalizes well
for all Atari games, we would need T'(s, a, s’) to be well defined with respect to latent state variables
in other Atari games as well, such as the paddle position in Breakout. Given any reasonable bound
on the MDP, we would not expect the agent to perform well when exposed to random configurations
of pixelsE|

1These definitions can be customized with alternative metrics for value estimation and optimality, such as replacing
[6(s) — vr (8)| with (9(s) — va(s))2.

2Modifications to the transition function itself are better described as transfer learning [51].

10

Note that a large body of work implicitly uses G as a criteria for performance, even though this
is the weakest of generalization capabilities. It is what you get when testing a learned policy in the
environment in which it was trained. Some readers may doubt that it is possible to learn policies
that extrapolate well. However, Kansky et al. [28] show that, with an appropriate representation,
reinforcement learning can produce policies that extrapolate well under similar conditions to what we
describe in this paper. What has not been shown to date is that deep RL agents can learn policies
that generalize well from pixel-level input.

We demonstrate a simple example of this state-space partition in Figure[3.1] a classic GRIDWORLD
benchmark. In this environment, the agent begins each episode in a deterministic start position, can
take actions right, right and up, and right and down, and obtains a reward of +1 when it arrives
at the goal state, s,. Note that the agent must move right at every step, therefore there are three
regions that are unreachable from the agent’s fixed start position: the upper left corner, the lower
left corner, and the lower left corner after the wall. While unreachable, the upper left corner is a
valid state that does not restrict the agent’s ability to reach the goal state and obtain a large reward.

Note that an agent interacting in the GRIDWORLD environment learns tabular Q-values, therefore
we should not expect it to satisfy any reasonable definition of generalization. However, given an
adequate exploration strategy, an agent could conceivably visit every off-policy state during training,
resulting in 9(s) converging to v*(s),Vs € Sieachable- This agent would satisfy Gr and Gj for
arbitrarily small values of § and 5. Despite this positive outcome, most observers would not say that
this agent “generalizes”’, because it lacks any function-approximation method. Only the definition Gg
is consistent with this conclusion.

With the emergence of RL—as—a—serviC(ﬂ and concerns over propriety RL technology, evaluators may
not have access to an agent’s training episodes, even if they have access to the training environments.
In this context, the distinction between G; and G is particularly important when measuring an
agent’s generalization performance, as off-policy states may have unknowingly been visited during

training.

Quantifying Generalization Error. Generalization in Q-value-based RL can be encapsulated
by two measurements for off-policy and unreachable states, one that accounts for the condition
d > |4(s,a) — gx(s,a)|—whether the agent’s estimate is close to the actual Q-value after executing
m—and another for the condition v > ¢*(s,a) — ¢ (s, a)—whether the actual Q-value is close to
the optimal Q-value. In our work, we use value estimate error, VEE(s) = 0(s) — v (s), and total
accumulated reward, TAR,(s) = E > p—; R(st4x) | st = s, a; = a], respectively.

In most situations, ¢*(s,a) is not known explicitly; however, TAR(s) can be used to evaluate
the relative generalization ability between two agents, as the optimal value for a given state is fixed
by definition.

Unlike TAR, (s), which, when measured in isolation can depend on the inherent difficulty of s,

VEE,(s) has the advantage of consistency. For example, if an agent is placed in a state such that

3e.g., https://portal.ds.microsoft.com

11

Unreachable Dff-policy

On-policy

,.
=}

|

Figure 3.1: Examples of on-policy, off-policy, and unreachable states in GRIDWORLD.

v*(s) = 0, TAR,(s) alone does not capture the model’s ability to generalize. VEE,(s) may, however,
if 9(s) =~ 0. We address this limitation of TAR,(s) in our experiment by training benchmark (BM)

agents on each of the evaluation conditions.

3.3 Methodology

In this section, we describe specific techniques for producing off-policy states and a general methodol-

ogy for producing unreachable states based on parameterized simulators and controlled experiments.

3.3.1 Off-Policy States

It is helpful to think of off-policy states as the set of states that a particular agent could encounter,
but doesn’t when executing its policy from sg. Framed in this way, the task of generating off-policy
states in practice is equivalent to finding agents with policies that differ from the policy of the agent
under inspection. We present three distinct categories of alternative policies for producing off-policy
states, which we believe to encapsulate a broad set of historical methods for measuring generalization
in RLA]

Stochasticity. One method for producing off-policy states is to introduce stochasticity into the
policy of the agent under inspection [39]. We present a representative method we call k off-policy
actions (k-OPA), which causes the agent to execute some sequence of on-policy actions and then

take k£ random actions to place the agent in an off-policy state. This method is scalable to large and

4We encourage readers to think critically about whether their strategy for generating off-policy states does in fact
differ from the agent’s policy, as this deviation may be difficult to measure.

12

complex environments, but careful consideration must be made to avoid overlap between states, as
well as to ensure that the episode does not terminate before k actions are completed. It is easy to
imagine other variations, where the k actions are not selected randomly but according to some other
mechanism inconsistent with greedy-action selection.

Human Agents. The use of human agents has become a standard method in evaluating the
generalization capabilities of RL agents. The most common method is known as human starts (HS)
and is defined as exposing the agent to a state recorded by a human user interacting with an interface
to the MDP environment [43]. One could easily imagine desirable variations on human starts within
this general category, such as passing control back and forth between an agent and a human user.
Human agents differ from other alternative agents in that they may not be motivated by the explicit
reward function specified in the MDP, instead focusing on novelty or entertainment.

Synthetic Agents. Synthetic agents are commonly used during training in multiagent scenarios,
although to our knowledge have not been used previously to evaluate an agent’s generalization ability.
We present a representative method we call agent swaps (AS), where the agent is exposed to a state
midway through an alternative agent’s trajectory. This method has the potential to be significantly
more scalable than human starts in large and complex environments, but attention must be paid to
avoiding overlap between the alternative agents and the agent under inspection. This method may
also be useful in applications not amenable to a user interface or otherwise challenging to gather

human data.

3.3.2 Unreachable States

Unreachable states are unlike off-policy states, which can be produced using carefully selected
alternative agents. By definition, unreachable states require some modification to the training
environment. We propose a methodology that is particularly well suited for applications of deep
RL, where agents often only have access to low-level observable effects, rather than what we would
typically describe as a semantically meaningful or high-level representation. In the case of AMIDAR
and other Atari games, for example, the position of individual entities can be described as latent
state and the rendered pixels are their observable effects.

Intervening on Latent State. We present two distinct classes of interventions on latent state:
existential, adding or removing entities, and parameterized, varying the value of an input parameter
for an entity. The particular design of intervention categories and magnitude should be based on
expected sources of variation in the deployment environment, and will likely need to be customized
for individual benchmarks.

To facilitate this kind of intervention on latent state, we implemented INTERVENIDAR, an AMIDAR
simulator. INTERVENIDAR closely mimics the Atari 2600 AMIDAR’S behavior while allowing users

to modify board configurations, sprite positions, enemy movement behavior, and other features of

5Readers familiar with AMIDAR will know that there are other features of gameplay not listed here; although
INTERVENIDAR reproduces them, they are not important to the training regimens, nor the overall results of this
paper.

13

100 - N o—"° 0\./’ . °

]
—_—
75 1 Control ALS / g
—o—_, o——¢

TAR (% of baseline)
2
l. 1
), ©
N\
7
[
(]
(\\.
[]
«
° ®
[
e

0§
25 - f:.\: ERFLS /. @ Y :
4 o—a a ™ H
0 T 1 1 T T 1 1 1 1 T 1
10 20 30 40 50 0 30 50 TL HC 256-HU
Training steps (millions) Exploring starts (actions) Network capacity

Figure 3.2: Average total accumulated reward (TAR) from various unreachable states for each of
the trained agents. The benchmark agents trained using ALS, ES, ER, FLS, and PRS configurations
respectively achieved average TARs of 94, 74, 14, 77, and 90 percent of the baseline TAR.

gameplay without modifying INTERVENIDAR source code. Some manipulable features that we use in
our experiments are:

Enemy existence and movement. The five enemies in AMIDAR move at a constant speed along
a fixed track. By default, INTERVENIDAR also has five enemies whose movement behavior is a
time-based lookup table that mimics enemy position and speed in AMIDAR. Other distinct enemy
movement behaviors include following the perimeter and the alternative movement protocols. These
enemy behaviors are implemented as functions of the enemy’s local board configuration and are used
for our transfer learning experiments.

Line segment existence and predicates. A line segment is any piece of track that intersects with
another piece of track at both endpoints. Line segments may be filled or unfilled; the player’s
objective is to fill all of them. In INTERVENIDAR, users may specify which of the 88 line segments
are filled at any timestep. Furthermore, INTERVENIDAR allows users to customize the quantity and
position of line segments.

Player/enemy positions. Player and enemy entities always begin a game in the same start positions
during AMIDAR, but they may be moved to arbitrary locations at any point in INTERVENIDAR.

We included these features in the experiments because they encapsulate what we believe to be
the fundamental components of AMIDAR gameplay, avoiding death and navigating the board to
accumulate reward. The scale of these interventions were selected to reflect a small change from the
original environment, and are detailed in the case-study section.

Control. In addition to producing unreachable states, parameterizable simulators enable fine
control of experiments, informing researchers and practitioners about where agents fail to generalize,
not simply that they fail macroscopically. One limitation of using exclusively off-policy states is
that multiple components of latent state may be confounded, making it challenging to disentagle
the causes of brittleness from other differences between on-policy and off-policy states. Controlled

experiments avoid this problem of confounding by modifying only a single component of latent state.

14

“UWN]OD SIY) JTUIO dM ‘0I9Z Tedll AIOA 10 019z oI ({)) [01JU0D I0J sonfes HHA [[& 9oUlg 'SV, oAlpoadsor
1101} Aq POZI[BULIOU 9Ie SoN[eA FH A ‘TOIY0D oY) JO YV.I, oY) A POZI[BULIOU 9Tk sonfeA YV, "P[O] Ul UMOTS oIk JUade }Ie-91[}-JO-9)€)s dul[aseq
oY) R I0330q uLIOJIod Jel) S)UeSe OAI)eUId)[Yy ‘SuoljeIndyuod [ejustiriodxe pue sjusde peurel) o) Jo [[e I0] HHA PUR VI :1°€ o[qel

000 060 | 000 LL0 T0°0 GL'0 | T0°0- ¥1°0 | 000 G6°0 Nd
€9°0- ¢T°'0 | 820~ 61°0 | ¢0°0- ¢9°0 | ¢0'0- 99°0 | T0°0- LL°0 | 67°0 €T°0 | €T°0- ¥e'0 | ¢0°0- ¢I'T | T0°0- ST'T 90°T Vdo0¢
9L°0- 0T°0 | 120 120 | €0°0- 8G6°0 | €0°0- 99°0 | 100 ¥8'0 | S€°0- ¥1°'0 | 820 g1'0 | €0°0- G660 | 100 96°0 €6°0 v4o0¢e
86°0- 60°0 | ¢€°0- 810 | S0°0- 870 | €0°0- 6S°0 | T0°0- ¥9°0 | 00°T- 60°0 | 62°0- 8T'0 | 80°0- 090 | €0°0- .0 .80 1L
6€°1- ¥0°0 | v¢°0- 010 | #1°0- 810 | 80°0- 9¢'0 | ¢0°0- 870 | 09°0- 800 | ST'0- ve'o | €1°0- I¥7°0 | 10°0- 86°0 96°0 OH
64°0- 80°0 | g0 ¢r'0 | €0°0- Lv'0 | €0°0- 0S°0 | 10°0- 090 | 19°0- 010 | 6T°0- 1€°0 | ¥0°0- 460 | 10°0- 0T'T €0°'T (NHI9%C
€0°T- G0'0 | 8T°0- 910 | S0°0- 8¢'0 | S0°0- 9¢'0 | 00°0 cv'o | €60 900 | 420~ ¢r'o | 8T°0- LT°0 | SO°0- ce’0 o 0T-1d
ve0- I1°0 | 8T°0- 61°0 | 90°0- ¥€0 | S0°0- ¥€0 | L0°0- 8¢'0 | 890 I1°0 | 62°0- LT°0 | OV°0- G1'0 | LCO- LT°0 LG°0 0¢-1d
68°0- 60°0 | 9¢°0- €T°0 | TT°0- 0€0 | 9T°0- 120 | 00°0 490 | 65°0- I1°0 | 2€0- ST°0 | 80°0- Ggg'0 | ¢00- g8°0 ¥6°0 0e-1d
GL'T- G0'0 | 67°0- 010 | 80°0- 0v°'0 | L0°0- ¢v'o | 10°0- 490 | TL°0- 600 | 6270 ST°0 | €0°0- 680 | 10°0- 16°0 96°0 ov-1d
€V'1- 900 | 6V°0- 010 | 80°0- Gge'0 | 80°0- 8¢'0 | T0°0- c9'0 | L9°0- 600 | T€0- G1°0 | €0°0- ¥6°0 | 10°0- 00T 00T 0¢-1d

HAA UVL | A UVL | HHA UVL | HHA UVL | HHA UVL | HHA UVL | GHA UVL | @HA ¥VL | @EA ¥vL | ¥viL
Sud STd el gt STV SH SV vdO-02 VdO-0T o)

15

3.4 Case Study: Amidar

We trained a suite of agents and evaluated them on a series of on-policy, off-policy, and unreachable
INTERVENIDAR states. Using our proposed partitioning of states and empirical methodology, we ran
a series of experiments on these agents’ ability to generalize. In this section, we discuss how we
generated off-policy and unreachable states for the AMIDAR problem domain.

We used the standard AMIDAR MDP specification for state: a three-dimensional tensor composed
of greyscale pixel values for the current, and three previous, frames during gameplay [43]. There are
five movement actions. The transition function is deterministic, and entirely encapsulated by the
AMIDAR game. The reward function is the difference between succesive scores, and is truncated such
that positive differences in score result in a reward of 1. There are no negative rewards, and state
transitions with no change in score result in a reward of 0.

We trained all agents using the state-of-the-art dueling network architecture, double Q-loss func-
tion, and prioritized experience replay [71, [73, [59]. All of the training sessions in this paper used the
same hyperparameters as in | Mnih et al./s work and we use the OpenAI’s baselines implementation [g].

AMIDAR Agents. We explored three types of modifications on network architecture and training
regimens in an attempt to produce more generalized agents: (1) increasing dataset size by increasing
training time; (2) broadening the support of the training data by increasing exploration at the start
of each episode; and (3) reducing model capacity by decreasing network size and number of layers.
To establish performance benchmarks for unreachable states, we trained an agent on each of the
experimental extrapolation configurations.

Training Time. To understand the effect of training-set size on generalization performance, we
saved checkpoints of the parameters for the baseline DQN after 10, 20, 30, and 40 million training
actions before the model’s training reward converged at approximately 50 million actions. This
process differs from increasing training dataset size in prediction tasks in that increasing the number
of training episodes simulataneously changes the distribution of states in the agent’s experience
replay.

Exploring Starts. To increase the diversity of the agent’s experience, we trained agents with 30
and 50 random actions at the beginning of each training episode before returning to the agent’s
standard e-greedy exploration strategy.

Model Capacity. To reduce the capacity of the Q-value function, we explored three architectural
variations from the state-of-the-art dueling architecture: (1) reducing the size of the fully connected
layers by half (256-HU), (2) reducing the number of channels in each of the three convolutional
filters by half respectively (HC), and (3) removing the last convolutional layer of the network (TL).
Recent work on deep networks for computer vision suggest that deeper architectures produce more
heirarchical representations, enabling a higher degree of generalization [31].

Off-policy States. We employed three strategies to generate off-policy states for an agent:
human starts, agent swaps, and k-OPA. None of these methods require the INTERVENIDAR system.
In each case, we ran an agent nine times, for n steps, where n € {100, 200, ...,900}.

Human starts. Four individuals played 30 INTERVENIDAR games each. We randomly selected 75

16

action sequences lasting more than 1000 steps and extracted 9 states, taken at each of the n time
steps [47].

Agent swaps. We designated five of the trained agents as alternative agents: (1) the baseline
agent, (2) the agent that starts with 50 random actions, (3) the agent with half of the convolutional
channels as the original architecture, (4) the agent with only two convolutional layers, and (5) the
agent with 256 hidden units. We chose these agents with the belief that their policies would be
sufficienctly different from each other to provide some variation in off-policy statesﬁ

k-OPA. Unlike the previous two cases where states came from sources external to the agent, in
this case we had every agent play the game for n steps before taking k& random actions, where k was
set to 10 and 20.

Unreachable States. With INTERVENIDAR, we generated unreachable states, guaranteeing that
the agent begins an episode in a state it has never encountered during training. All modifications to
the board happen before gameplay.

Modifications to enemies. We make one existential and one parameterized modification to enemies:
We randomly remove between one and four enemies from the board (ER), and we shift one randomly
selected enemy by n steps along its path, where n is drawn randomly between 1 and 20 (ES).

Modifications to line segments. We make one existential and one parameterized modification to
line segments: We add one new vertical line segment to a random location on the board (ALS) and
we randomly fill between one and four non-adjacent unfilled line segments (FLS).

Modification to player start position. We start the player in a randomly chosen unoccupied tile
location that has at least one tile of buffer between the player and any enemies (PRS).

Transfer Learning: Assessing Representations. We conducted a series of transfer learning
experiments [51], freezing the convolutional layers and retraining the fully connected layers for 25
million steps. We use these results to understand how learned representations in the convolutional
layers relates to overall generalization performance. We train each of the agents using the alternative
enemy movement protocol so that enemies move on the basis of local track features, rather than
using a lookup table. If an agent has learned useful representations in the convolutional layers, then
we expect that agent to learn a new policy using those representations for the alternative movement

protocol [[]

3.5 Results

Our experiments demonstrate that: (1) the state-of-the-art DQN has poor generalization performance

for AMIDAR gameplay; (2) distance in the network’s learned representation is strongly anti-correlated

6When evaluating any of the alternative agents, we only used states from the remaining four to generate off-policy
states.

"We distinguish this transfer learning experiment from our extrapolation experiments in that the transfer learning
experiment modifies the transition function T'(s,a, s’) and by extension ¢*(s, a). In the extrapolation experiments,
an agent can later encounter states it has observed during training and effectively use its learned policy, which is
not necessarily true if the transition function changed.

17

ES

FLS

R b .
he b R A =
N as
LA
3 wy

3

A mrte
T IZF =

B(s)

Vr (S)

J—_...-_—
——

PRS

N dElMis

i
X

Figure 3.3: 9(s) and v,(s) for replicated trajectories for all experiments. Each subplot is a single
independent trial. For the interpolation experiments, the vertical grey line shows the point where
the agent takes random actions (in the k-OPA experiments) or regains control (in the agent swaps
and human-starts experiments). The length of each episode is consistently lower and the difference
between 9(s) and v, (s) is consistently higher for the extrapolation experiments.

with generalization performance; (3) modifications to training volume, model capacity, and ex-

ploration have minor and sometimes counterintuitive effects on generalization performance; and

18

'1.5 I I I I I I I I I
O oY oY 2 & S XSSO
A
Interpolation Extrapolation

Figure 3.4: TAR and average VEE for control, extrapolation, and interpolation experiments. The
agent consistently overestimates the state value. TAR and VEE are strongly anti-correlated. All
TAR bars are normalized by the TAR of the control condition. All VEE bars are normalized by their
respective TAR.

(4) generalization performance does not necessarily correlate with an agent’s ability to transfer
representations to a new environment.

Poor Generalization Performance. Figures and [3.4]show that the fully trained state-of-the-
art DQN dueling architecture produces a policy that is exceptionally brittle to small non-adversarial
changes in the environment. The most egregious examples can be seen in Figure [3.4] in the filling
line segments (FLS) and player random starts (PRS) interventions. Visual inspection of the action
sequences proceeeding these states showed the agent predominantly remaining stationary, often
terminating the epsisode without traversing a single line segment. This behavior can be seen in
Figure [3:3] where PRS and FLS episodes terminate prematurely. Videos displaying this behaviour
can be found in the supplementary materials.

Furthermore, Figure shows that VEE and TAR are very highly anti-correlated across the

19

0 1 2 3 4
Euclidian distance to nearest training instance

Figure 3.5: Smoothed empirical distributions of the distances between the test points of the extrapo-
lation experiments and the training data. Generalization performance is anti-correlated with distance
from previously seen states.

experiments, indicating that the agent’s ability to select appropriate actions is related to its ability
to correctly measure the value of a particular state. We observe that the model always overestimates
the value of off-policy and unreachable states. In contrast, the agent’s value estimates are small and
approximately symetrically distributed around 0 in the control condition.

Distance in Representation. By extracting the activations of the last layer of the DQN, we
are able to observe the distance between training and evaluation states with respect to the network’s
learned representation. Figure depicts the density estimates for the distribution of these distances.
We find that the agent does not “recognize” the unreachable states where generalization is the worst,
such as PRS and FLS, implying that the learned representation is inconsistent with these components
of latent state. Alternatively, one could imagine a network that performs poorly by conflating states
that are meaningfully different. Using the activations of the last layers, both the relative distances
between each state’s internal representation and its Q-valuecan be depicted in a two dimensional
graph using t-SNE [38] as in Figure The perturbed states, such as FLS, ER, ALS, stayed close
together in terms of their internal representations. However, each state’s temporal correlation seems
to play a more important role in combining each state’s internal representation.

Training Agents for Generalization. We take inspiration from well-established methods in
supervised learning; increasing training set size, broadening the support of the training distribution,
and reducing model capacity. We propose the following analogs to each of these methods, respectively;
increasing the number of training episodes, introducing additional exploration, and removing layers

and nodes.

20

100 A o, e TEST
L RS . FLS
75 « N e ER
oy, - e ALS
,-r,'.'.:" %"b
oy 70y o
o oo : 2
25 - w, j 7 T e i
ety S e {" “""" (\ 28 Slien
0 .“."- '0‘ - 22 o,-,--‘ . . :‘““.; - s),
b 7 i e 7 W < it
-, e e g W o
% P T e -* % &
251 e ! w4 ﬂ‘ o % W
“Ctisey L' . * | j ! %
& a
50 - i A W s
e P Ly
&, .
{
!‘b, H B Drws - o ‘j
=175 A s - 2
: -
-100 s
-100 =75 =50 =25 0 25 50 75 100

Figure 3.6: t-SNE plot of a single run. t-SNE plot is showing the relationship between the relative
distances of each input state’s internal representation and each state’s Q-value. The data is collected
from a single test run of the game. Although perturbed states stay close together in terms of their
internal representations, each state’s temporal correlation seems to play a more important role in
combining each state’s internal representation.

These experiments indicate that: (1) naively increasing the number of training episodes until
training set performance converges reduces generalization; (2) some reductions to model capacity
induce improvements to generalization; and (3) increasing exploration and otherwise diversifying
training experience results in more generalized policies. These results are shown in figure [3.2}

Training Episodes. While increasing training time clearly increases the total accumulated reward
in the control condition, shorter training times appear to contribute to increased generalization
ability. This increase is minimal, but it does illustrate that naively increasing training time until
converge of training rewards may not be the best strategy for producing generalized agents.

Model Capacity. Of the reductions to model capacity, we find that shrinking the size of the
fully-connected layers results in the greatest increase in generalization performance across perturba-
tions. Reducing the number of convolutional layers also results in improvements in generalization
performance, particularly for the enemy perturbation experiments.

Exploration Starts. We find that increasing the diversity of training experience has the greatest
effect on generalization performance, particularly for the agent with 50 random actions. This agent
experiences almost a twofold increase in total accumulated reward for human starts and all of
the extrapolation experiments. This agent outperforms the baseline agent in every condition. Of

particular interest is the agent’s performance on the enemy shift experiments, where the agents’ total

21

V (Baseline) A (Baseline) KL (Baseline) V (ALS) A(ALS) KL (ALS)

(a) At frame 30.

V (Baseline) A (Baseline) KL (Baseline) V(ALS) A (ALS) KL (ALS)

(b) At frame 86.

V (Baseline) A (Baseline) KL (Baseline) V(ALS) A (ALS) KL (ALS)

(c) At frame 127.

Figure 3.7: Saliency Maps of AMIDAR. The value function (V), advantage function (A) and KL
divergence (KL) values are depicted in heatmaps. Baseline and ALS states are compared.

accumulated reward approaches the reward achieved by an agent trained entirely in that scenario.

Hierarchical Representations and Generalization. While the agents with increased explo-
ration demonstrate a clear improvement in generalization ability over baseline, it is not consistent
with their ability to accumulate large reward with the alternative enemy-movement protocol after
retraining. This finding contradicts those of work on representations in computer vision, where
transferability of representations directly corresponds to generalization ability.

Saliency Maps. Using Greydanus et al. [I5]’s method, the value function (V), advantage
function (A) and KL divergence (KL) values are depicted in heatmaps. Baseline and ALS states are

compared in Figure [3.7]

Chapter 4

Policy Comparison using Value

Decomposition

4.1 Introduction

Reinforcement learning (RL) is a method that lets an agent interact with its environment making
decisions sequentially and learns along the process of achieving specified goals [67]. As reinforcement
learning is applied to larger domains such videos games and robotics [43, [I6], explaining a learned
agent is becoming more important [63].

In this paper, we propose a novel method for providing a tool to decompose the agent’s value
into the accumulated reward obtained before vs. after visiting a state and use this metric to select
an important decision state where switching to a different policy would result in the most impact in
the overall value of starting states. Based on this analysis, we generate an explanation for the most

influential state.

4.2 Backgrounds

4.2.1 Markov Decision Process

Most RL agents are modelled by a Markov Decision Process (MDP). An MDP is defined by a tuple
(S, A, T,R,v). S denotes all possible states in an agent’s environment and Sy is a set of possible
start states. The transition function T': S; A — S maps a state and action pair to its next state. If
s€ Sand T(s,a,s") =0 for Vs',a, s is a terminal state and a set of terminal states are denoted as
St. In this paper, the reward function R : S — R is defined only for arrival states regardless of its
initial state and an action, R(:,-, s). 7 is a discount rate. The objective of an agent is to maximize
the accumulate sum of rewards discounted by ~.

A policy, 7 : S — A, maps a state to an action and characterizes the behavior of an agent. The

22

23

Q-value, Q(s,a) is the expected return of a state s by following a policy 7 after taking ac action a
and can be defined as E, [Zzozl YPR(seyn | 8¢ = 8,08 = a]. An optimal policy 7* is the policy that

maximizes V;(s),Vs € S. A value of a state is given as V;(s) = Q(s,7(a)).

4.2.2 Explaining a policy for a MDP

Khan et al.|first developed a method to explain an RL agent represented in a MDP using an occupancy
frequency [29]. Using an occupancy frequency they developed a method to distinguish the most
influential sets of states that each set has the same reward value. Templates for explanations can
then be generated including an occupancy frequency for that set of states and factors of states that
are generalized from the set of states.

Our approach is built upon this framework and add an algorithm to compare two different policies
and find a state that switching to a different policy from this state has the most impact in the overall

utility of an agent, Es es, [V (s0)].

4.3 Methods

This section describes are algorithmic approach.

4.3.1 Occupancy Frequency and Value Decomposition

A (discounted) occupancy frequency K of a state s’ starting from sg following a policy, 7, is defined
by

Ko7 (s") =Y " 4'P(s141 = 5| 50). (4.1)
t=0
It can be computed by a recurrence relation derived from the above definition.

K= (s') = 3" T(s/|s, () (P(s0 = 5) + 7K™ (s)). (42)

Given a policy 7, the occupancy frequency can be used to calculate a value of a starting state sg
together with a reward function, R.
Vi(so) = D [K*07(s) - R(-,-,)] (4.3)
seS
In this paper, we propose a new decomposition of this occupancy frequency K into two parts. Given
a state s* € S, s* ¢ Sy, occupancy frequencies of a state s’ € S before and after visiting s* can be

separated into anterior and posterior occupancy frequencies, L and M respectively:

K37 (s) = L7 (s) + M (s'). (4.4)

s* s*

The recurrence relationships for calculating L and M are given as

L) = 3 T(s' | s,7(s) (Plso =) + YL (s), (4.5)
seS\{s*}

24

and
M (") = AT (s | s, m(s*)) L2 (s MZT s, m(s)) MO (s). (4.6)

The different M value can be calculated for a counterfactual policy change from my to 7 when the

state s* is reached if we use the L from the policy 7y:

MECTOT () = 4T (s | 5%,y (s%)) L™ (s* +VZT "I s,y (s)) MECTOT (), (4.7)

Using the linearity of the occupancy frequencies, we can derive the value decomposition:

Vi m(50) = Vi x(s0) + Vil 2 (s0). (4.8)

4.3.2 Contrasting two different policies

Our approach to explaining RL agents contrasts a policy g with the other policy m1. Specifically, we
want to answer the question of why an agent should choose its preferred policy my over a contrasting
policy 7. The comparison of two polices is achieved by situating an agent in a counterfactual
situation. We run an agent from a start state or a set of start states and let it follow its preferred
policy my until a significant state s* is reached. We compare the behavior of an agent that continues
with its my policy to one that switches at that point to the contrasting policy 7.

The value decomposition approach from the previous section can efficiently compare the value of

the original and counterfactual policy. Both policies’ expected values can be calculated via:

‘/57770;770 (SO) VSLTI'(]() + ‘/:9],\741'0,71'0 (80)7 <4'9)

VvSJTOJFl (80) Vstro (80) + V:e ,TT0,T1 (80) (410)

By looking into the theses value differences, we are comparing the impact of switching policies,

I ny 71 (S0), after an agent first visits the intermediate state s. This impact is measured by

Is 7,71 (80) = Vs mo,m0 (50) = Vs mo,mi (80) = Vsl,\;fro,wo (s0) — V;I,\;Iro,m (s0)- (4.11)
M M
SO]ESO [Is,Tro,m (30)} = S()IGES() [Vs,m,wo(0) — Vs 0,1 (50)] . (4.12)

The expectation of the impact over all the start states measures the overall impacts of switching
policies with respect to a intermediate state s. To generate a useful explanation, we want to find the
state s* that maximizes this impact, s* = argmax, Es e s, [Ls,m0,m (S0)]- The state is the one that, if
an agent changes from 7y to an alternative policy m; upon reaching that state, it will have the most

impact on the overall performance of an agent.

25

4.4 Experiment and Evaluation

We demonstrate our method with an experiment on the 4 x 3 GridWorld domain introduced in the
Russell and Norvig/s book [56]. In this domain, we look at three different methods for choosing an

influential state to use in our explanation.

4.4.1 Metrics

(A) Maximum Q-value difference: s, = argmax, [Qn, (s, 70(5)) — Q. (s, 71(s))]. This method
answers the question: Which state would have its value change the most if it switched from following
o to following the action proposed by 7 for one step? As Q-values encode a simple kind of
counter-factual, and Q-values are produced in the context of many RL algorithms, this method is a
very natural one to consider. A drawback of this method, however, is it does not take into account
where the agent actually starts: so (or a distribution over such states). A state could have very
different Q-values, but be so unlikely to be reached that is hypothetical difference is moot.

(B) Maximum value difference: s, = argmax, [V, (s) — Vi, (s)]. This method chooses the
state where the two policies differ the most in terms of their state values V. The value of a state V(s)
is the expected discounted return starting from s and following 7. The maximum value difference is
a direct and simple way to select a state that is very different for the two different policies—it’s the
place in the state space where following the policies leads to the most extreme difference in value. It
is like the maximum Q-value difference except it considers switching behavior indefinitely, instead of
for the single step used in Q values. As such, it provides a stronger contrast and a more meaningful
counter-factual. Like the maximum Q-value difference, however, it does not consider the likelihood
that the state is reached, resulting in a potentially misleading choice of state.

(C) Impact using anterior and posterior occupancy frequencies: s* = argmax, Ey s, [Ls,mo,m, (50)]-
Our proposed approach evaluates the difference resulting from following 7y until s is reached, and
then following pi; after that point. Although marginally more computationally complex than the
prior two methods, the main advantage of this impact measure is that it accounts the overall value
difference on the start state, and not just what happens when starting at the state. In this sense, it is

a much better choice as the answer to the why question of how changing policies impacts the results.

4.4.2 GridWorld

The GridWorld is fully observable and has four actions, Up, Down, Left, and Right. For each action,
an agent will go to an intended state with the probability 0.8 and will move at the right angles to
the original direction for the rest. Taking each step at non-terminal states, the agent receives the
reward —0.04 and at two terminal states, the goal and lava, the ,mkj either +1 or —1 respectively as
in Fig. (c).

The polices for the comparison are depicted in Fig. (a) and (b). The optimal policy is
generated from the value iteration method and the shorted path policy is generated to minimize the

total number of steps before reaching the goal state with the reward +1. The occupancy frequencies

3 S I I N B R X
oo - | t - .
O I I A (I B I
0 1 2 3 0 1 2 3
(a) (b) (©)

Figure 4.1: GridWorld policies. (a) An optimal policy 7o with R(-,-,s) = —0.04, Vs € S,s ¢ Sr.
Shortest path policy m with the same R. (¢) A diagram showing the slip probability of an action.

0.06

0.175

26

0.025
-0.000 -0.000 0.000 0.05 2 0.009 0.009 0.009 0.000 0.150
0.020
12
0.04 0125
NP 0009 0000 0081 0.000 0.100 0.015
0.03
0.075 0,010
0.02 :
ocss [. .. 0050
0.01 0.025 0.005
0.00 0 1 2 3 0.000 0.000
X X X

(b)

Figure 4.2: The comparison of three evaluation metrics. (a) Q-value difference. (b) Value difference. (c)

Impact using anterior and posterior occupancy frequencies.

0.000 0.504

0.111 0.155 0.055

0.000

0.073

0.090

0.010

0.000

0.000

0.175
0.150
0.125
0.100
0.075
0.050
0.025

0.000

Figure 4.3: The anterior and posterior occupancy frequencies of the state s* = (1,0) (a) L2™(s). (b)
MZOTOT (). (¢) MO0 (s).

L and M can also be generated using the similar value iteration method and the calculated L and
M for the state (1,0) are depicted in Fig.

The results on the three metrics is in Fig. [4.3] The state (2, 1) is chosen for the metric (A) and
(B). For (A) we can explain the result as

If an agent starts at (2,1) with two different policies, the difference of two expected
returns will be 0.066.

27

For (B), the generated explanations are

If an agent starts at (2,1) with two different policies, if an agent takes the optimal action
Left it will receive more reward by 0.081 compared to taking an action Up which is from

the alternative shortest path policy.

The proposed Impact metric has chosen a different state (1,0). We can generate the below explanations

with our occupancy frequencies and factoring states by [29].

At the state (1,0), if an agent switches from the optimal policy o to the shortest path
policy 71, the overall value of a start state (0,0) will differ by 0.029 which is most
compared to any other states. Before reaching a state (1,0), the goal state (3,2) will be
reached by 0.794 times. If an agent continues applying the optimal policy, it will reach
the goal state (3,2) 0.142 times which is 0.015 times more than switching to the shortest
path policy. If an agent switches to shortest path policy it will reach the lava state (3, 1)

0.20 times more compare to 0.0 times when the policy is unchanged.

4.5 Conclusion

We presented the framework for choosing a state that has the most impact in overall value and
provide detailed explanations based the calculated anterior and posterior occupancies. This also gives
the power to reason counterfactully since we can assume the same precondition and reason about the
outcome based on the decision a designer can make by continuing or switching to a different policy.
In our future work, we would like to expand this framework to more domains and possibly to deep

RL domains.

Bibliography

[1]

2

3

4]

[5]

[6]

7]

[8

19]

[10]

Andrew Anderson, Jonathan Dodge, Amrita Sadarangani, Zoe Juozapaitis, Evan Newman,
Jed Irvine, Souti Chattopadhyay, Alan Fern, and Margaret Burnett. Explaining reinforcement
learning to mere mortals: An empirical study. arXiv preprint arXiv:1903.09708, 2019.

Devansh Arpit, Stanistaw Jastrzebski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxin-
der S Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, et al. A closer

look at memorization in deep networks. arXiv preprint arXiv:1706.0539/, 2017.

Elias Bareinboim. Causal reinforcement learning. URL https://www.youtube.com/watch?v=
bwz3NpViz6k.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253-279,
jun 2013.

Or Biran and Courtenay Cotton. Explanation and justification in machine learning: A survey.
In IJCAI-17 workshop on explainable AT (XAI), volume 8, page 1, 2017.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Gilad Cohen, Raja Giryes, and Guillermo Sapiro. Dnn or k-nn: That is the generalize vs.

memorize question. arXiv preprint arXiv:1805.06822, 2018.

Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec
Radford, John Schulman, Szymon Sidor, and Yuhuai Wu. Openai baselines. https://github,

com/openai/baselines, 2017.

Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable machine learning.
arXiv preprint arXiv:1702.08608, 2017.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom Ward,
Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl
with importance weighted actor-learner architectures. arXiv preprint arXiv:1802.01561, 2018.

28

https://www.youtube.com/watch?v=bwz3NpVfz6k
https://www.youtube.com/watch?v=bwz3NpVfz6k
https://github.com/openai/baselines
https://github.com/openai/baselines

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

29

Lasse Espeholt, Raphaél Marinier, Piotr Stanczyk, Ke Wang, and Marcin Michalski. Seed rl:
Scalable and efficient deep-rl with accelerated central inference. arXiv preprint arXiv:1910.06591,
2019.

Gregory Farquhar, Tim Rocktéschel, Maximilian Igl, and Shimon Whiteson. Treeqn and
atreec: Differentiable tree-structured models for deep reinforcement learning. arXiv preprint
arXiw:1710.11417, 2017.

Felix A Gers, Jiirgen Schmidhuber, and Fred Cummins. Learning to forget: Continual prediction
with Istm. IET Conference Proceedings, pages 850-855(5), January 1999.

Leilani H Gilpin, David Bau, Ben Z Yuan, Ayesha Bajwa, Michael Specter, and Lalana Kagal.
Explaining explanations: An overview of interpretability of machine learning. In 2018 IEEE 5th
International Conference on data science and advanced analytics (DSAA), pages 80-89. IEEE,
2018.

Sam Greydanus, Anurag Koul, Jonathan Dodge, and Alan Fern. Visualizing and understanding
atari agents. arXiv preprint arXiv:1711.00138, 2017.

Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement learning
for robotic manipulation with asynchronous off-policy updates. In 2017 IEEFE international
conference on robotics and automation (ICRA), pages 3389-3396. IEEE, 2017.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee,
and James Davidson. Learning latent dynamics for planning from pixels. arXiv preprint
arXw:1811.04551, 2018.

Joseph Y Halpern and Judea Pearl. Causes and explanations: A structural-model approach.
part i: Causes. The British journal for the philosophy of science, 56(4):843-887, 2005.

Matthew J Hausknecht and Peter Stone. The impact of determinism on learning atari 2600

games. In AAAI Workshop: Learning for General Competency in Video Games, 2015.

Bradley Hayes and Julie A Shah. Improving robot controller transparency through autonomous
policy explanation. In 2017 12th ACM/IEEE International Conference on Human-Robot
Interaction (HRI, pages 303-312. IEEE, 2017.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,
Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements
in deep reinforcement learning. In Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

Andreas Holzinger, Georg Langs, Helmut Denk, Kurt Zatloukal, and Heimo Miiller. Causability
and explainabilty of artificial intelligence in medicine. Wiley Interdisciplinary Reviews: Data

Mining and Knowledge Discovery, page el1312, 2019.

23]

[24]

[25]

[26]

[27]

(28]

29]

[30]

31]

[32]

[33]
[34]

[35]

30

Seunghoon Hong, Dingdong Yang, Jongwook Choi, and Honglak Lee. Interpretable text-to-
image synthesis with hierarchical semantic layout generation. In Explainable AI: Interpreting,

Ezxplaining and Visualizing Deep Learning, pages 77-95. Springer, 2019.

Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado van Hasselt,
and David Silver. Distributed prioritized experience replay. In International Conference on

Learning Representations, 2018.

David Hume. An enquiry concerning human understanding. In Seven masterpieces of philosophy.
Routledge, 2016.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-based
reinforcement learning for atari. arXiv preprint arXiv:1903.00374, 2019.

Sham M. Kakade. On the Sample Complexity of Reinforcement Learning. PhD thesis, Gatsby

Computational Neuroscience Unit, University College London, 2003.

Ken Kansky, Tom Silver, David A Mély, Mohamed Eldawy, Miguel Lazaro-Gredilla, Xinghua Lou,
Nimrod Dorfman, Szymon Sidor, Scott Phoenix, and Dileep George. Schema networks: Zero-shot
transfer with a generative causal model of intuitive physics. arXiv preprint arXiv:1706.04317,
2017.

Omar Khan, Pascal Poupart, and James Black. Minimal sufficient explanations for factored
markov decision processes. In Proceedings of the International Conference on Automated Planning
and Scheduling, volume 19, pages 194-200, 2009.

Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, and
Rory Sayres. Interpretability beyond feature attribution: Quantitative testing with concept
activation vectors (tcav). arXiv preprint arXiw:1711.11279, 2017.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems 25, pages 1097-1105. Curran

Associates, Inc., 2012.

Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and time series.
The handbook of brain theory and neural networks, 3361(10):1995, 1995.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436, 2015.
David K Lewis. Causal explanation. Philosophical Papers 2, pages 214-240, 1986.

Erik Lindholm, John Nickolls, Stuart Oberman, and John Montrym. Nvidia tesla: A unified
graphics and computing architecture. IEEE micro, 28(2):39-55, 2008.

[36]

37]

[38]

[39]

[40]

[41]

42|

[43]

[44]

[45]

[46]

[47]

31

Zachary C Lipton. The mythos of model interpretability. Queue, 16(3):31-57, 2018.

Tania Lombrozo. The structure and function of explanations. Trends in cognitive sciences, 10

(10):464-470, 2006.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579-2605, 2008.

Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and
Michael Bowling. Revisiting the arcade learning environment: Evaluation protocols and open

problems for general agents. arXiv preprint arXiv:1709.06009, 2017.

Ajay Mandlekar, Yuke Zhu, Animesh Garg, Li Fei-Fei, and Silvio Savarese. Adversarially robust
policy learning: Active construction of physically-plausible perturbations. In Intelligent Robots
and Systems (IROS), 2017 IEEE/RSJ International Conference on, pages 3932-3939. IEEE,
2017.

Tim Miller. Explanation in artificial intelligence: Insights from the social sciences. Artificial
Intelligence, 267:1-38, 2019.

Brent Mittelstadt, Chris Russell, and Sandra Wachter. Explaining explanations in ai. In
Proceedings of the conference on fairness, accountability, and transparency, pages 279-288. ACM,
2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement

learning. In International conference on machine learning, pages 1928-1937, 2016.

Matej Moravéik, Martin Schmid, Neil Burch, Viliam Lisy, Dustin Morrill, Nolan Bard, Trevor
Davis, Kevin Waugh, Michael Johanson, and Michael Bowling. Deepstack: Expert-level artificial
intelligence in heads-up no-limit poker. Science, 356(6337):508-513, 2017.

W James Murdoch, Chandan Singh, Karl Kumbier, Reza Abbasi-Asl, and Bin Yu. Interpretable
machine learning: definitions, methods, and applications. arXiv preprint arXiv:1901.04592,
2019.

Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory Fearon, Alessandro
De Maria, Vedavyas Panneershelvam, Mustafa Suleyman, Charles Beattie, Stig Petersen, et al.
Massively parallel methods for deep reinforcement learning. arXiv preprint arXiv:1507.04296,
2015.

(48]

[49]

[50]

[51]

[52]

53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

32

Anh Nguyen, Jason Yosinski, and Jeff Clune. Understanding neural networks via feature
visualization: A survey. In FEzplainable Al: Interpreting, Explaining and Visualizing Deep

Learning, pages 55—76. Springer, 2019.

Ali Nouri, Michael L Littman, Lihong Li, Ronald Parr, Christopher Painter-Wakefield, and
Gavin Taylor. A novel benchmark methodology and data repository for real-life reinforcement

learning. In Proceedings of the 26th international conference on machine learning, 2009.

Junhyuk Oh, Satinder Singh, and Honglak Lee. Value prediction network. In Advances in Neural
Information Processing Systems, pages 6118-6128, 2017.

Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Learning and transferring mid-level
image representations using convolutional neural networks. In Proceedings of the IEEFE conference

on computer vision and pattern recognition, pages 1717-1724, 2014.

Judea Pearl and Dana Mackenzie. The book of why: the new science of cause and effect. Basic
Books, 2018.

" why should i trust you?" explaining

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin.
the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international

conference on knowledge discovery and data mining, pages 1135-1144, 2016.

Ribana Roscher, Bastian Bohn, Marco F Duarte, and Jochen Garcke. Explainable machine

learning for scientific insights and discoveries. arXiv preprint arXiv:1905.08883, 2019.

Donald B Rubin. Causal inference using potential outcomes: Design, modeling, decisions.
Journal of the American Statistical Association, 100(469):322-331, 2005.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 3
edition, 2010.

Wojciech Samek. Fxplainable Al: interpreting, explaining and visualizing deep learning, volume
11700. Springer Nature, 2019.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay.
arXiw preprint arXiw:1511.05952, 2015.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay.

In International Conference on Learning Representations, 2016.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. arXiv preprint arXiv:1911.08265, 2019.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region

policy optimization. In International conference on machine learning, pages 1889-1897, 2015.

[62]

[63]

[64]

[65]

(6]

[67]

[68]

[69]

[70]

[71]

[72]

73]

[74]

33

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Pedro Sequeira, Eric Yeh, and Melinda T Gervasio. Interestingness elements for explainable

reinforcement learning through introspection. In IUI workshops, volume 1, 2019.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al.
Mastering the game of go with deep neural networks and tree search. nature, 529(7587):484,
2016.

David Silver, Hado van Hasselt, Matteo Hessel, Tom Schaul, Arthur Guez, Tim Harley, Gabriel
Dulac-Arnold, David Reichert, Neil Rabinowitz, Andre Barreto, et al. The predictron: End-
to-end learning and planning. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 3191-3199. JMLR. org, 2017.

Richard S Sutton and Andrew G Barto. Introduction to reinforcement learning, volume 135.
MIT press Cambridge, 1998.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradi-
ent methods for reinforcement learning with function approximation. In Advances in neural

information processing systems, pages 1057-1063, 2000.

Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel. Value iteration
networks. In Advances in Neural Information Processing Systems, pages 2154-2162, 2016.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double

q-learning. In Thirtieth AAAI conference on artificial intelligence, 2016.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double
g-learning. In AAAI volume 2, page 5. Phoenix, AZ, 2016.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaél Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350-354, 2019.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot, and Nando De Freitas.
Dueling network architectures for deep reinforcement learning. arXiv preprint arXiv:1511.06581,
2015.

Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos, Koray Kavukcuoglu,
and Nando de Freitas. Sample efficient actor-critic with experience replay. arXiv preprint
arXiv:1611.01224, 2016.

[75]

[76]

[77]

(78]

[79]

[80]

[81]

34

Laurens Weitkamp, Elise van der Pol, and Zeynep Akata. Visual rationalizations in deep
reinforcement learning for atari games. In Benelux Conference on Artificial Intelligence, pages
151-165. Springer, 2018.

Shimon Whiteson, Brian Tanner, Matthew E Taylor, and Peter Stone. Protecting against
evaluation overfitting in empirical reinforcement learning. In Adaptive Dynamic Programming
And Reinforcement Learning (ADPRL), 2011 IEEE Symposium on, pages 120-127. IEEE, 2011.

Sam Witty, Jun Ki Lee, Emma Tosch, Akanksha Atrey, Michael Littman, and David Jensen.
Measuring and characterizing generalization in deep reinforcement learning. arXiv preprint
arXiv:1812.02868, 2018.

Yuhuai Wu, Elman Mansimov, Roger B Grosse, Shun Liao, and Jimmy Ba. Scalable trust-region
method for deep reinforcement learning using kronecker-factored approximation. In Advances in

neural information processing systems, pages 5279-5288, 2017.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.

Chiyuan Zhang, Oriol Vinyals, Remi Munos, and Samy Bengio. A study on overfitting in deep
reinforcement learning. arXiv preprint arXiv:1804.06893, 2018.

Jan Ruben Zilke, Eneldo Loza Mencia, and Frederik Janssen. Deepred—rule extraction from deep
neural networks. In International Conference on Discovery Science, pages 457-473. Springer,
2016.

	List of Tables
	List of Figures
	Introduction
	Backgrounds
	Reinforcement Learning
	Explainable Artificial Intelligence (XAI)
	Interpretability and Explainability
	Causality
	Explanations

	Difficulty in Explaining a Deep RL Agent
	The role of generalization in explaining
	Recasting generalization
	Methodology
	Off-Policy States
	Unreachable States

	Case Study: Amidar
	Results

	Policy Comparison using Value Decomposition
	Introduction
	Backgrounds
	Markov Decision Process
	Explaining a policy for a MDP

	Methods
	Occupancy Frequency and Value Decomposition
	Contrasting two different policies

	Experiment and Evaluation
	Metrics
	GridWorld

	Conclusion

	Bibliography

