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Reinforcement learning (RL) techniques have led to remarkable results in challenging

domains such as Atari games, Go, and Starcraft, suggesting that practical applications

lie just over the horizon. Before we can trust decisions made by RL policies, however,

we need more visibility into how they work. To explain a reinforcement-learning agent,

I propose extending the power of counterfactual reasoning to sequential domains by

comparing its policy to a baseline policy at a set of automatically identified decision

points. My novel method for selecting important decision points considers a large pool

of candidate states and decomposes the agent’s value into the reward obtained before

vs. after visiting that state. A state is considered important if the accumulated reward

obtained after switching to the baseline policy is most different from that obtained

after continuing its policy. The engine of this computation is a decomposition of

occupancy frequencies of an agent’s policy that characterize the whereabouts of an

agent before and after the policy change. Structuring the policy evaluation in this way

provides a causal account for its outcome. I have demonstrated the approach on a set

of standard RL benchmark domains, providing explanations using the decomposed

occupancy frequencies.
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Chapter 1

Introduction

With the invention of fast graphical processing units (GPUs) [52] and new deep learning

techniques [50, 49, 23], there has been rapid progress in reinforcement learning. Learned

agents can play some Atari games at a superhuman level [61, 20, 21] and defeat human

experts in games like Go, Poker, and Starcraft [83, 63, 96]. However, there is still little

understanding of how these systems work, both among machine-learning experts and

domain experts. This dissertation focuses on sequential decision-making strategies

learned by reinforcement-learning agents, so I revisit the current developments in

this area and investigate the meaning of explainable AI (XAI) for illuminating the

behavior of reinforcement-learning agents.

Some of my work relates to probing the generalization capacity of a deep RL

algorithm called deep Q networks (DQN) [102, 103]. Investigating what happens

inside a deep artificial neural network after training is an example of an approach

1
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to explanation called post-hoc methods. The semantic state perturbations used in

this work are specifically designed to support counterfactual reasoning in explaining

the learned agent. The results show how the algorithm genuinely fails to generalize

with respect to these semantic perturbations in its input states, thus disabling the

counterfactual reasoning between actual states and imaginary states. Given the lack

of evidence that high-level explainable structures are found within the network, users

have only weak insights into how the agents work.

According to Pearl [69] and others, causality plays an essential role in human

explanation. In this work, I extend the power of counterfactual reasoning to sequential

domains by comparing a learned policy to a baseline policy at a set of automatically

identified decision points. This novel method for selecting important decision points

considers a large pool of candidate states and decomposes the agent’s value into the

reward obtained before vs. after visiting that state. A state is considered important

if the accumulated reward obtained after switching to the baseline policy is most

different from that obtained by continuing with the original policy. The engine of

this computation is a decomposition of occupancy frequencies of an agent’s policy

that characterize the whereabouts of an agent before and after the policy change.

Structuring the policy evaluation in this way provides a causal account for its outcome.

I have demonstrated the approach on a set of standard RL benchmark domains,

showing that the behavior of such an agent can be meaningfully explained, leading to

more trustworthy and transparent AI.
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Main Context

Counterfactual reasoning is central to how people make explanations. Attempt-

ing to generate explanations for reinforcement-learning agents using only their

value and policy networks is unlikely to work because these networks are not

designed to support counterfactual reasoning.

Thesis Statement

By comparing two policies, instead of just explaining one, it is possible to adapt

counterfactual reasoning so that it applies to reinforcement-learning agents. The

resulting automatically-generated explanations can help people better under-

stand the relative strengths and weaknesses of the policies constructed in the

reinforcement-learning process.



Chapter 2

Backgrounds

This chapter defines and describes the major foundational concepts this dissertation

builds on. First, it explains what reinforcement learning is and the definition of Markov

decision processes. Descriptions of the more recent deep versions of reinforcement

learning techniques follow. Second, it tries to disambiguate the meaning of “Explainable

AI (XAI)” and investigates recent related work in the context of supervised learning

and reinforcement learning. Lastly, causality is introduced due to its importance in

human explanations. Studies of explanations are discussed.

2.1 Reinforcement Learning

What distinguishes reinforcement learning from other topics in machine learning

is that it addresses learning by acting in an environment and receiving reward in

a delayed manner [87]. The decision-making of a reinforcement-learning agent is

4
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generally modeled using the formalization of Markov Decision Processes.

2.1.1 Markov Decision Process

A Markov Decision Process (MDP) is defined by a tuple ⟨S,A, T,R, γ⟩. The set S

denotes all possible states in the agent’s environment and S0 is a set of possible start

states for learning and acting episodes. The transition function T : S,A→ S maps

a state-and-action pair to its next state. If s ∈ S and T (s, a, s′) = 0 for ∀s′, a, s is

considered a terminal state in that an agent in this state is completed its learning or

acting episode. The set of all terminal states is denoted ST . In this dissertation, the

reward function R : S → R is defined only for arrival states regardless of its initial

state and an action, R(s). The scalar γ is a discount rate. The objective of an agent

is to maximize the accumulated sum of rewards geometrically discounted by γ.

A policy, π : S → A, is a mapping from states to actions, fully characterizing the

behavior of an agent. The Q-value of a state–action pair, Qπ(s, a), is the expected

return for following π from s after taking action a, Eπ

[∑∞
k=1 γ

kR(st+k) | st = s, at = a
]
.

The value of a state, Vπ(s), is the expected return by following π from s, Qπ(s, π(s)).

The optimal policy π∗ is the policy π that maximizes Vπ(s),∀s ∈ S, which is equivalent

to maximizing Qπ(s, a)∀s, a ∈ S,A. The value of a state for a fixed policy π is given

as Vπ(s) = Q(s, π(a)).

For more background on MDPs, please see the book by Puterman [70].
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2.1.2 Advances in Reinforcement Learning

A widely used class of methods for deriving policies in RL constructs an approximation

of the value function represented as a function from a state–action pair to a value,

Q̂(s, a), and then selects the action that maximizes Q̂(s, a) at each timestep [87]. Deep

Q-networks (DQNs) are one such method, using multi-layer artificial neural networks

as a nonlinear function approximation for Q̂(s, a) [61]. Another widely used class of

methods leverages a parameterized function, πθ(s, a), which can be used to choose an

action without looking up a value function. The only criteria for the parameterized

function is that it needs to be differentiable with respect to its parameters so that it

can be trained with the policy gradient algorithm [88]. If the action space is continuous,

the function can directly output actions and for MDPs with discrete action spaces

the parameterized numerical preferences, hθ(s, a) ∈ R, can be learned and used to

give the actions with the highest preferences the highest probabilities by utilizing the

exponential soft-max distribution, π(s, a) = ehθ(s,a)∑
b e

hθ(s,b)
.

Deep RL algorithms generally require a differentiable state-value parameterization

function, V̂θv(s), and a differentiable policy parameterization function, πθp(s, a), is

additionally required for policy gradient algorithms [87].

A common testbed for these algorithms is the Arcade Learning Environment

(ALE) [6], which supports a collection of several dozen Atari video games, instrumented

to allow agents to learn to maximize score. Early DQN algorithms used enhancements

such as prioritized experience replay, double Q learning, and dueling networks [76, 92,
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98]. Later algorithms used distributional value functions [7], noisy DQN, and n-step

bootstrapping. The combination of these techniques shows superior performance [35]

compared to the original “vanilla” DQN algorithm. Distributed versions of these

algorithms such as Ape-X, Gorilla, and R2D2 [38, 65] show even better performance

than their single-threaded counterparts.

Compared with the above value-based algorithms, policy-gradient algorithms such

as A3C [62], TRPO [79], ACER [99], ACKTR [104], PPO [80], IMPALA [20], and

SEED [21] use an algorithm structure called actor critic for learning. Similar to

value-based methods, this approach maintains a value function approximation to

be consulted to learn the policy function. However, actor-critic algorithms keep an

explicit representation of the policy, which is updated as part of the learning process.

Actor-critic methods often use distributed actors to play multiple games simultaneously.

Since policy-based methods such as these can handle continuous action spaces, this

set of algorithms are often used in the environments where actions take the form of a

vector of real numbers [10].

Model-based deep RL algorithms followed quickly after the seminal DQN work.

To date, learning a model of the environment and optimizing behavior in the learned

model remains an inferior approach compared to the model-free methods mentioned

above [28, 42]. The Predictron learns to predict its next state, reward, and discount

values using its internal representations to aid the planning procedure [84]. The model

still takes a full MDP, but its representation can be an internal hidden layer values of
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a deep network. TreeQN [22] and value iteration networks [89] learn an abstract and

local MDP model, respectively, and bring tree-structured models and value iteration

into the realm of deep neural networks. Value prediction networks learn an MDP

grounded on real actions, although its representations are not the original inputs [68].

MuZero [78] is a successor to the value prediction networks algorithm in that it learns

an MDP with real actions and also learns reward and values functions together. It

has has shown superior performance on Atari testbeds.

2.2 Explainable Artificial Intelligence (XAI)

As artificial intelligence systems are more widely used in society, the importance of

explaining these systems has grown rapidly, especially in the areas of decision-making

systems and supervised learning systems [24, 59, 64, 60, 53, 72, 18, 36, 75]. There is

yet no general consensus in what explainable AI is and researchers interchangeably

use two terms, explainability and interpretability. In this dissertation, I use both terms

without significant distinction between them.

2.2.1 Interpretability and Explainability

Lipton [53] provides the desiderata of the interpretable machine learning (ML): trust,

causality, transferability, informativeness, and fair and ethical decision-making. Lipton

[53] also distinguishes two properties of interpretable ML: transparency and post-hoc

explanations.
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Transparency in this context refers to asking “how does a model work?” A model

here refers to deep neural networks, decision trees, linear regression, or any other type

of learned structure. Transparency requires the person receiving the explanation to

have prior knowledge about the workings of the specific choice of machine-learning

model. Transparency can be achieved at the level of an entire model (simulatability),

at the level of subcomponents (decomposability), or at the level of an algorithm

(algorithmic transparency).

Post-hoc explanations are given to users by extracting information from learned

models while a given model is assumed to be a black box. Such explanations include

natural language explanations, visualization of learned representations, and explana-

tions by example. Miller [59] and Biran and Cotton [9] make a distinction between

explanations and justifications. Justifications can explain why a given model is making

good choices, but cannot explain individual decisions.

In most cases, deep neural networks are considered to be less transparent due to

their dependence on the value of their network parameters to encode behavior, despite

the fact that all their numerical calculations are fully known [72]. There is numerous

work in building alternative models to sit alongside the original model to explain deep

neural networks in a more interpretable way. Such examples include a linear proxy

model called LIME [71] and a decision-tree method called DeepRED [109]. Visualizing

learned features in deep neural networks at different levels of their hierarchies has

already been examined by many researchers in the field. Researchers have seen signs
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of textures, shape patterns, and parts of objects [66]. Kim et al. [45]’s work is an

early attempt to systematize the process of finding these features through concept

activation vectors (CAV) and translating them into meaning explanations. In terms

of generating images from text inputs using a Generative Adversarial Network (GAN),

Hong et al. [37] used a semantically hierarchical network structure instead of a end-to-

end network to improve the network’s transparency. To better explain deep neural

networks’ decision-making, pixel level visualization using heatmaps, sometimes called

saliency maps, and semantic segmentation have also been used extensively [72].

2.2.2 Explainable Reinforcement Learning (XRL)

Milani et al. [58] classify the previous work in explainable reinforcement learning (XRL)

into three categories: feature importance (FI), learning process and MDP (LPM), and

policy-level (PL). On the other hand, Sequeira et al. [81] separate XRL methodologies

into three topics: environment, interaction and meta analysis. Milani et al. [58] also

suggest two categorizations for interpretabability: intrinsic vs. post-hoc and local vs.

global. These dimensions can be related to the two properties of interpretable ML

from the previous section: intrinsic interpretability is in general considered to be more

transparent and post-hoc interpretability is the same in both categorizations. Local

interpretability mostly refers to looking into one-step analysis in MDP settings and

global interpretability seeks to look in a holistic view and is similar to the notion of

meta-analysis.
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I explain below the current limitations of XRL methods and how some of the

existing work relates to the methods introduced in this dissertation based on Milani

et al.’s survey [58].

FI mostly deals with direct relationships between state and actions that are

generally represented as a policy function π : S → A. The first approach is to

directly model a policy function with intrinsically interpretable policies. The most

common method is to use decision trees (DTs). Notable results include Silva et al.

[82]’s differentiable soft decision trees and Topin and Veloso [90]’s CUSTARD, an

augmented MDP method designed so its action set includes actions for constructing

a DT. However, DTs are not suitable for high-dimensional states and each element

in a DT only divides states parallel to its axes. Alternative approaches in building

intrinsically interpretable policies include using logical expressions and representing

policies with more complex functions and fuzzy logics [34, 48, 33, 108].

Instead of learning interpretable policies directly, other researchers tried to convert

an existing policy to similarly interpretable formats as the above methods [41, 8, 107].

All these approaches still share the pitfall that, as their explanations get more complex,

they become innately harder to comprehend, resulting in high cognitive load for the

user. Also, the performance of more simplified interpretable models may not meet the

performance the original policy to be explained.

Through forms of natural language and saliency maps, researchers have tried

to directly generate explanations from the learned models. Based on agents’ state
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features, Ehsan and Riedl [19] trained a network to separately output natural lan-

guage explanations using an LSTM (long short-term memory), and Wang et al. [97]

used outputs of an attention network to generate template-based natural language

explanations. Hayes and Shah [32] used templates to generate explanations using

heuristic algorithms. Although their approach helps to increase the trust of a user,

they do not provide evidence that these explanations are grounded in the agents’ actual

decision-making. My method is also template-based. However, it uses a counterfactual

approach to strengthen the explanations compared to prior methods.

Wang et al. [98], Greydanus et al. [26], and Weitkamp et al. [100] developed

methods to display saliency maps with the goal of showing the focus of attention in a

learned deep neural network. Anderson et al. [2] combined saliency maps with reward

decomposition and conducted a user study to verify human users’ understanding of the

given information by checking a user’s ability to predict next outcomes. More detailed

classifications of the saliency map method were provided by Atrey et al. [3]. In the

following chapter, we show the saliency maps on the modified Atari game Amidar

based on Greydanus et al. [26]’s method.

Mnih et al. [61] visualized the distribution of the internal representation values

with respect to the distances between input vectors using the t-SNE method. The

AlphaStar team at Deepmind [95] used the transformer network [94] to beat human

experts in Starcraft and the method was able to visualize which location of the game

board the trained agent is focusing on and which actions it is currently considering.
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However, this visualization can be viewed as an output-based visualization of high-level

concepts of the game instead of an explanation per se.

The value decomposition method that will be introduced in Chapter 4 lies between

Milani et al.’s LPM and PL categories. It uses MDP properties such as the transition

function T and reward function R, giving it elements in common with the LPM

category. But it also reasons at a policy level going beyond single steps, like other

examples of the PL category. However, unlike other methods introduced in Milani

et al.’s survey [58], the method introduced in this dissertation considers policy choices

and trajectories of an agent during its simulation or testing phase rather than during

its training phase. This property enables a user to consider what an agent would do

when the real situation occurs. On the other hand, the existing method considers

which training point or trajectory contributes to specific decisions.

LPM methods learns an approximate model of a transition function T̂ and try

to produce explanations based on the extracted data from T̂ . This data can be task

success rates [12, 13] or intended outcome [105]. Madumal et al. [57] build a structural

causal model to understand the relationship between actions and state features. Our

method learns occupancy frequencies to also understand the intended outcome and

success rate of given tasks as well. Different rewards often means different goals or

outcomes that agents pursue or avoid. Decomposition of rewards into meaningful

contexts can lead to interesting explanations and understanding of how such rewards

influence agents’ decisions [2]. Khan et al. [44] and Anderson et al. [2] factor rewards
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into the set of reward types R(s, a) =
∑

c∈C Rc(s, a), which are also used in our

methods. The methods of Dao et al. [15] and Gottesman et al. [25] try to find most

influential training points for their agents’ decision-making, which is related to the

selection of high impact decisions in our method.

Policy level (PL) explanations seek to provide a summarization of transitions [1,

39, 47] and convert their inner recurrent neural network’s (RNN’s) information into an

interpretable format [46, 14, 30]. Other approaches either extract clusters [85] or use

abstract states [90]. The abstraction of states can be directly used alongside our value

decomposition methods. An interesting direction for future work would be seeking

different methods of interpretable state-abstraction methods.

2.2.3 Causality

The idea of causality is central to how people create and understand explanations.

Let’s take a moment to examine how causality is viewed in computational terms to

provide the basis for later discussion of explanations.

Based on the regularity theory of Hume [40], if one type of event always occurs

before the other, there is a causal relationship between those two types of events.

However, like the fact that a rooster crows before sunrise does not indicate a rooster is

the cause of a sunrise, a mere association between two events is not sufficient to claim

that one event is the cause of the other event. To handle this situation, Pearl and

Mackenzie [69] suggests that causal reasoning should be performed on at least three
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levels: association, intervention, and counterfactuals. Pearl calls this set of levels the

Ladder of Causation.

The first rung of the ladder is association. This level of reasoning can be understood

by seeing and observing. Most current statistics and supervised learning techniques

work at this level. The reasoning here can answer questions: “How are two variables

related?” and “How would seeing an event X can change my belief in event Y ?”

The second rung of the ladder is intervention. Activities relating to this level of

reasoning include doing and intervening. The causal reasoning at this level can answer

questions: “What is the difference in the expected outcome when I do A instead of

B?” and “What action is required to make Y happen?” Reinforcement learning and

learning causal Bayesian models work at this level [5].

The third and topmost rung is counterfactuals. Imagining, retrospection, and

understanding activities fall into this category. What if and Why questions are

examples of counterfactual questions. Counterfactuals are the hypothetical events

that do not cause an event that is to be explained [59].

Halpern and Pearl [29] formally define an actual cause of an event X = x as a set

of events E (an individual variable is expressed as a form of Y = y) if the following

criteria hold:

1. In a real situation, both X and E have to be true.

2. If E had some counterfactual value, then the event X = x would not have been

true.
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YX

Figure 2.1: A causal diagram showing X causes Y .

3. E has to be minimal. That is E should not contain any irrelevant variables.

Causal relationships can be represented as a graph, with each node representing a

variable and a directed edge from node X pointing to node Y meaning X causes Y as

in Fig. 2.1.

In Rubin [73]’s definition, a potential outcome of a variable Y when X is assigned

with value x is YX=x. The probability of a potential outcome of Y holding a specific

value y when X holds value x is defined as P (YX=x = y). Using this notation, both

the probability of necessity and sufficiency can be defined [69]:

• Probability of Necessity (PN): P (YX=0 = 0|X = 1, Y = 1).

• Probability of Sufficiency (PS): P (YX=1 = 1|X = 0, Y = 0).

When there is more than one cause for a single outcome, comparison of these two

values for two different causes can give us insights into which cause is more important

than the other. The probability of necessity tells us that, when the cause is not

present, how likely the expected event is to not occur given that the cause led to the

desired outcome in reality. The probability of sufficiency tells us, when the cause is

present, how likely the outcome is to occur given that the lack of cause led to no

desired outcome. Pearl and Mackenzie [69] states that this mechanism can play an

important role when determining the most probable cause in autonomous systems.
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Lastly, Pearl and Mackenzie [69] introduce do-operator to properly acknowledge

intervention in probabilities. While P (Y |X) only captures mere association between

two events, P (Y | do(X)) represents an intervention on X to influence Y and also

inhibition of all other effects directing to X. I make use of precisely this setup in the

method introduced in this dissertation.

2.2.4 Explanations

Pearl and Mackenzie [69] claim that causation plays an essential role in human

explanation. Every time we interact with our world, we ask questions such as why

events happen in particular ways, why objects have certain properties, and why

people behave in such a way [54]. Lewis [51] defines explanation as a way to provide

information about an event’s causal history.

According to Gilpin et al. [24], a good explanation can be dependent on the question

and pays particular interest to two types of why-questions: why and why-should. He

also claims that a good explanation in general comes from good inference, but it can

also come from the use of abductive reasoning: finding all possible causes of an effect

and finding the best one. Pearl and Mackenzie [69]’s Ladder of Causation can be

leveraged to answer questions like What happened, How it happened, and Why it

happened, at each respective level.

Lombrozo [54] notes that explanation is a product and a process at the same time.

Gilpin et al. [24] argue that there are two processes and a product in explaining: a
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cognitive process, a product, and a social process. If explanation is a product, then

explaining has to go through both a cognitive and social processes. In this dissertation,

I focus on the cognitive process and the product first when generating explanations and

then, in future work, seek to consider explanations as a tool for social communication.



Chapter 3

Difficulty in Explaining a Deep RL

Agent

Portions of this chapter appeared in the earlier paper, "Measuring and

Characterizing Generalization in Deep Reinforcement Learning" [102, 103]

with Sam Witty, Emma Tosch, Akanksha Atrey, Michael Littman, and

David Jensen.

3.1 The Role of Generalization in Explaining

As discussed in the background chapter, a key capability in explaining a learned

agent is being able to reason about counterfactual situations and their outcomes. In

this chapter, I describe joint work between me and several colleagues in developing

a method that perturbs input states in a semantically meaningful way to create

19
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counterfactual situations. Although the true intention of this setup is to see how

an agent behaves in counterfactual situations to better explain the rationale behind

its actions, the performance of an agent after perturbation is far inferior to that of

non-perturbed situations. I claim that this phenomena is mainly due to the lack of

generalization in current Deep RL training method.

To assess generalization in an RL context, we proposed a method to categorize a

state set of an MDP given by its domain and present performance measures based on

this categorization. In this chapter, we examine both the GridWorld and the Atari

game Amidar. To generate contextually perturbed states for testing, we provided a

modified Atari environment called Intervenidar modeled after the original Amidar game.

This environment enabled us to examine estimated value differences and expected

rewards in various possible counterfactual states. It let us answer questions like “What

would an agent do if an enemy did not exist in this location?” However, in our test

results, we show that the trained policies make poor decisions in such unfamiliar

states. As a consequence, it makes it difficult to generate insightful explanations as

the agent has not explored enough to correctly predict the counterfactual outcome.

Therefore, we question the extent to which learned deep Q networks actually construct

generalized representations and show counterfactually reason within a given policy.

Prior Work on Generalization in RL.

Generalization has been a long discussed topic in reinforcement learning [87].

Kakade [43] provided a theoretical framework for bounding the amount of training
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data needed for a discrete state and action RL agent to achieve near optimal reward.

Nouri et al. [67] and Zhang et al. [106] discuss how to apply the idea of a training/testing

split from supervised learning in the context of offline policy evaluation with batch

data in RL. Whiteson et al. [101] and Zhang et al. [106] claims that to avoid overfitting

it is necessary to diversify the environments that agents are trained on. In other cases,

researchers tried to introduce novel states to agents by adding stochasticity to the

policy [31], having the agent take random steps, no-ops, steps from human play [65],

or probabilistically repeating the agent’s previous action [56]. These existing methods

provide diverse training data to avoid overfitting and enhance generalization of agents,

but none tries to introduce the states that are unreachable but also contextually valid

states. We claim such states provide better evidence for high-level generalization.

3.2 State Categorization and Performance Measures

Traditionally, generalization is tested by leaving out the part of training examples as a

test set. However, due to the nature of an RL agent’s training procedure, distinctions

between a training and test set pair can be unclear. This issue is exacerbated in the

Arcade Learning Environment (ALE) [6] since most of its games only allow small

variations in the beginning of each game by starting at a different time step. Moreover,

in real world scenarios, there will always be a case where an agent encounter unseen

states no matter how well training and test sets are designed for the agents. In the

following, we define reachable, unreachable, on-policy, and off-policy states to better
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partition the set of states of an MDP in a way that supports assessing generalization

for RL agents.

Based on the reachability of a state, we define two categories of a state space S:

Definition 3.2.1 (Reachable State). Given an MDP M = ⟨S,A, T,R, γ⟩ with a set

of start states S0, St is defined as below.

For t > 0,

St = {s ∈ S |T (sp, a, s) > 0,∀sp ∈ St−1 ∧ ∀a ∈ A}.

A state s is reachable if s ∈ St for any t ≥ 0.

A set of reachable states of an MDP M is defined as

Sreachable = S0 ∪ S1 ∪ · · · ∪ S∞.

Definition 3.2.2 (Unreachable State). A set of unreachable states of an MDP M is

defined as

Sunreachable = S \ Sreachable.

A state s is unreachable if s ∈ Sunreachable.

The above notions can be extended to define on-policy and off-policy states for a

given policy as below.

Definition 3.2.3 (On-policy State). Given an MDP M = ⟨S,A, T,R, γ⟩ with a set

of start state S0, and a deterministic policy π, Sπ
t is defined as below.
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For t = 0,

Sπ
0 = S0.

For t > 0,

Sπ
t = {s ∈ S |T (sp, π(sp), s) > 0,∀sp ∈ Sπ

t−1}.

A state s is on-policy if s ∈ Sπ
t for any t ≥ 0.

A set of on-policy states of an MDP M is defined as

Sπ
on = Sπ

0 ∪ Sπ
1 ∪ · · · ∪ Sπ

∞.

Definition 3.2.4 (Off-policy State). A set of off-policy states of an MDP M is

defined as

Sπ
off = Sreachable \ Sπ

on.

A state s is off-policy if s ∈ Sπ
off.

We look at two performance measures. First, we compare value-estimate errors

(VEEs). We compare the estimated value of each state from the learned model to the

expected discounted return from the rollouts taken after that state:

VEEπ(s) = E
π

[
∞∑
k=1

R(st+k) | st = s, at = π(s)

]
− V̂ π(s).

This VEE reflects the extent to which the estimated value correctly predicts the future

outcome.

The second value we examine is an expected discounted return (EDR) from a start
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state.

EDRπ(s0) = E
π

[
∞∑
k=1

R(sk) | s0 = s, a0 = π(s)

]
.

It is essentially the (undiscounted) value of the start state s0, V π(s0). We use the

estimation of this quantity from the finite number of rollouts, Ṽ π(s0).

3.3 Case Study: GridWorld

We first demonstrate an example of these four categories in the GridWorld domain in

Fig. 3.1. The GridWorld used in the chapter consists of 25× 16 grid and in the middle

and it has a wall at x = 13 that spans from y = 1 to y = 12. In this environment,

an agent begins each episode at a start state s0 and can take actions right, right up,

right down. The agent obtains a terminal reward of +1 when it reaches the goal state

sg and an intermediate reward of +0.1 when it reaches a state where x = 2 + 3i and

y = 2+3j for all i, j ≥ 0. Since it always advances to the right, there are three regions

that are unreachable from the agent’s start state: the upper left corner, the lower left

corner, and the lower left corner after the wall. Note that the agent would be able to

reach the goal from unreachable states in the upper left corner.

In our first case study, we ran tabular Q-learning on the GridWorld domain and

its progression during learning is depicted in Fig. 3.3. The optimal value function V ∗

calculated via value iteration is shown in Fig. 3.2.

As depicted in Fig. 3.3, Q-learning gradually makes the value of each state closer to

its optimal value. However, it usually takes very long time to converge to an optimal
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Figure 3.1: Examples of on-policy, off-policy, and unreachable states in GridWorld.

Figure 3.2: Optimal value function for the GridWorld example.

policy and, if the state space is large, it is completely impractical to identify the

optimal policy from all states. Although the learned policy π is not optimal for all

the states (see Fig. 3.4), it still learned the optimal path from the start state and

thus fulfilled its main mission. Therefore, if you only consider the performance of an

agent, this result appears adequate and measuring the performance of the learned
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(a) (b)

(c) (d)

Figure 3.3: The progression of Q-learning in GridWorld (a) After 5040 episodes. (c) After
6400 episodes. (c) After 7200 episodes. (d) After 11920 episodes.

(a) (b)

Figure 3.4: The Explanation of four states in the GridWorld (a) Values π learned by the
tabular Q-learning method (b) Optimal values from the value iteration.
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policy produces the same conclusion. However, the algorithm’s behavior is a problem

when counterfactual comparisons are made. Consider comparing the learned policy

to the optimal policy for this grid at the four different states highlighted as from 1

through 4 in white circles in Fig. 3.4, and the result of attempting to explain the

behavior of the agent in these states. In the case of the State 1, which is an on-policy

state, both the learned and optimal policies output the same result. In contrast, if

you use the learned policy, both State 2 and State 3, which are off-policy, will not

reach the goal state (see Fig. 3.4 (a)). Using the optimal policy, only State 2 will

reach the goal and State 3 will not (See Fig. 3.4 (b)). States 2 and 3 are semantically

different, even though the learned policy treats them as highly similar. The difference

can later be used to explain the effect of wall in the agent’s decisions. However, the

explanations that can be distilled from both policies differ drastically based on the

learning progress. It is therefore necessary to capture this phenomenon in the testing

phase, but, even there, it is hard to capture if we only use the performance measures

on on-policy states or trajectories.

For unreachable states like State 4, the predicted values are the same for both

policies. However, if we train on a broader set of start states that includes State 4, the

results will be different and the explanations will also disagree. In real world scenarios,

it is impossible to include all possible start states and the problem of this discrepancy

can be an issue.
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3.4 Case Study: Amidar and Intervenidar

Amidar (see Fig. 3.5) is a Pac-Man-like video game in which an agent moves a player

around a two-dimensional maze, accumulating reward for each vertical and horizontal

hallway segment visited. An episode terminates when the player makes contact with

one of the five enemies that also move around in the grid. After three episodes, the

game is over.

We demonstrate the state categorization described previously on Amidar, which

has been used as a benchmark task for deep RL. We trained a suite of agents and

evaluated them on a series of on-policy, off-policy, and unreachable Intervenidar states.

Using our proposed partitioning of states and empirical methodology, we ran a series

of experiments on these agents’ performance to assess how well they generalize.

We used the standard Amidar MDP specification for state: a three-dimensional

tensor composed of greyscale pixel values for the current, and three previous, frames

during gameplay [61]. There are five movement actions. The transition function is

deterministic. The reward function is the difference between successive scores, and is

truncated such that positive differences in score result in a reward of 1. There are no

negative rewards, and state transitions with no change in score result in a reward of 0.

We trained all agents using the state-of-the-art dueling network architecture, double

Q-loss function, and prioritized experience replay [93, 98, 77]. All of the training

sessions in this dissertation used the same hyperparameters as in Mnih et al.’s work [61]

and we use the OpenAI’s baseline implementation [16].
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(a) Default start (b) Default death (c) Modified start (d) Modified death

Figure 3.5: Minor changes in Amidar game state can dramatically reduce a trained
agent’s reward.

3.4.1 Methodology

In this section, we describe specific techniques for producing off-policy states and

a general methodology for producing unreachable states based on parameterized

simulators and controlled experiments.

Off-Policy States

Stochasticity. One method for producing off-policy states is to introduce stochasticity

into the agent’s policy [56]. We present a representative method we call k off-policy

actions (k-OPA), which causes the agent to execute some sequence of on-policy actions

and then take k random actions to place the agent in an off-policy state. This method

is scalable to large and complex environments, but careful consideration must be

made to avoid overlap between states, as well as to ensure that the episode does

not terminate before k actions are completed. It is easy to imagine other variations,

where the k actions are not selected randomly but according to some other mechanism

inconsistent with greedy-action selection.

Human Agents. The use of human agents has become a standard method in
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evaluating the generalization capabilities of RL agents. The most common method is

known as human starts (HS) and is defined as exposing the agent to a state recorded

by a human user interacting with an interface to the MDP environment [61]. One

could easily imagine desirable variations on human starts within this general category,

such as passing control back and forth between an agent and a human user. Human

agents differ from other alternative agents in that they may not be motivated by

the explicit reward function specified in the MDP, instead focusing on novelty or

entertainment.

Synthetic Agents. We present a state-sampling method method we call agent

swaps (AS), where the agent is exposed to a state midway through an alternative

agent’s trajectory. This method has the potential to be significantly more scalable

than human starts in large and complex environments since it can work using agents

trained with different random seeds.

Unreachable States

Unreachable states are unlike off-policy states, which can be produced using carefully

selected action sequences. By definition, unreachable states require some modification

to the environment such as removing or adding game entities.

Intervening on Latent State. We present two distinct classes of interventions

on latent state: existential, adding or removing entities, and parameterized, varying

the value of an input parameter for an entity.
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To facilitate this kind of intervention on latent state, our colleagues implemented

Intervenidar, an Amidar emulator. Intervenidar closely mimics the behavior of the

Atari 2600 Amidar game, while allowing scientists to modify board configurations,

sprite positions, enemy movement behavior, and other features of gameplay. Some

manipulable features that we use in our experiments are:

Enemy existence and movement. The five enemies in Amidar move at a constant

speed along a fixed track. By default, Intervenidar also has five enemies whose

movement behavior is a time-based lookup table that mimics enemy position and

speed in Amidar. Other distinct enemy movement behaviors include following the

perimeter.

Line segment existence and predicates. A line segment is any hallway in the maze

that intersects with another hallway at both endpoints. Line segments may be filled

or unfilled; the player’s objective is to fill all of them to advance to the next board.

In Intervenidar, scientists may specify which of the 88 line segments are filled at any

timestep. Furthermore, Intervenidar allows scientists to customize the quantity and

position of line segments.

Player/enemy positions. Player and enemy entities always begin a game in the

same start positions during Amidar, but they may be moved to arbitrary locations at

any point in Intervenidar.

We included these features in the experiments because they cover what we believe to

be the fundamental components of Amidar gameplay, avoiding death and navigating the
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board to accumulate reward. The scale of these interventions were selected to constitute

small changes from the original environment and hence minimal counterfactuals.

3.4.2 Experiment Setup

We trained a suite of agents and evaluated them on a series of on-policy, off-policy,

and unreachable Intervenidar states. In this section, we discuss how we generated

off-policy and unreachable states for the Amidar problem domain.

Amidar Agents. We explored three types of modifications on network architecture

and training regimens in an attempt to produce agents that generalized well: (1)

increasing dataset size by increasing training time; (2) broadening the support of

the training data by increasing exploration at the start of each episode; and (3)

reducing model capacity by decreasing network size and number of layers. To establish

performance benchmarks for unreachable states, we trained an agent on each of the

experimental unreachable configurations.

Training Time. To understand the effect of training-set size on generalization

performance, we saved checkpoints of the parameters for the baseline DQN after 10,

20, 30, and 40 million training actions before the model’s training reward converged

at approximately 50 million actions. This process differs from increasing training

dataset size in prediction tasks in that increasing the number of training episodes

simulataneously changes the distribution of states in the agent’s experience replay.

Exploring Starts. To increase the diversity of the agent’s experience, we trained



33

agents with 30 and 50 random actions at the beginning of each training episode before

returning to the agent’s standard ϵ-greedy exploration strategy.

Model Capacity. To reduce the capacity of the Q-value function, we explored three

architectural variations from the state-of-the-art dueling architecture: (1) reducing

the size of the fully connected layers by half (256-HU), (2) reducing the number of

channels in each of the three convolutional filters by half (HC), and (3) removing the

last convolutional layer of the network (TL).

Off-policy States. We employed three strategies to generate off-policy states

for an agent: human starts, agent swaps, and k-OPA. None of these methods require

the Intervenidar system. In each case, we ran an agent nine times, for n steps, where

n ∈ {100, 200, . . . , 900}.

Human starts. Four individuals played 30 Intervenidar games each. We randomly

selected 75 action sequences lasting more than 1000 steps and extracted 9 states, taken

at each of the n time steps [65].

Agent swaps. We designated five of the trained agents as alternative agents: (1)

the baseline agent, (2) the agent that starts with 50 random actions, (3) the agent

with half of the convolutional channels as the original architecture, (4) the agent with

only two convolutional layers, and (5) the agent with 256 hidden units. We chose

these agents with the belief that their policies would be sufficienctly distinct from

each other to provide some variation in off-policy states.1

1When evaluating any of the alternative agents, we only used states from the remaining four to
generate off-policy states.



34

k-OPA. Unlike the previous two cases where states came from sources external to

the agent, in this case we had every agent play the game for n steps before taking k

random actions, where k was set to 10 and 20.

Unreachable States. With Intervenidar, we generated unreachable states, guar-

anteeing that the agent begins an episode in a state it has never encountered during

training. All modifications to the board happen before the agent begins acting.

Modifications to enemies. We make one existential and one parameterized modifi-

cation to enemies: We randomly remove between one and four enemies from the board

(ER), and we shift one randomly selected enemy by n steps along its path, where n is

drawn randomly between 1 and 20 (ES).

Modifications to line segments. We make one existential and one parameterized

modification to line segments: We add one new vertical line segment to a random

location on the board (ALS) and we randomly fill between one and four non-adjacent

unfilled line segments (FLS).

Modification to player start position. We start the player in a randomly chosen

unoccupied tile location that is at least one tile away from any enemies (PRS).

3.4.3 Results

Our experiments demonstrate that: (1) the state-of-the-art DQN has poor gener-

alization performance for Amidar gameplay; (2) distance in the network’s learned
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representation is strongly anti-correlated with generalization performance; (3) modifi-

cations to training volume, model capacity, and exploration have minor and sometimes

counterintuitive effects on generalization performance.

Poor Generalization Performance. Fig. 3.6 show that the fully trained

state-of-the-art DQN dueling architecture produces a policy that is exceptionally

sensitive to small contextual to environmental variations. The worst examples can be

seen in Fig. 3.6, in the filling line segments (FLS) and player random starts (PRS)

interventions. Examination of the action sequences preceding these states showed

the agent predominantly remaining stationary, often terminating epsisodes without

completing a single line segment.

Furthermore, Fig. 3.6 shows that VEE and EDR are very highly anti-correlated

across the experiments, indicating that the agent’s ability to select appropriate actions

is related to its ability to correctly measure the value of a particular state. We observe

that the model always overestimates the value of off-policy and unreachable states. In

contrast, the agent’s value estimates are much more accurate in the control condition.

Distance in Representation. By extracting the activations of the last layer

of the DQN, we are able to observe the distance between training and evaluation

states in terms of the network’s learned representation. Fig. 3.7 depicts the the

distribution of these distances. We find that the agent does not “recognize” the

unreachable states where generalization is the worst, such as PRS and FLS, in the

sense that the internal representations are quite far from what is observed during its
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Figure 3.6: EDR and average VEE for control, off-policy, and unreachable experiments.
The agent consistently overestimates the state value. EDR and VEE are strongly
anti-correlated. All EDR bars are normalized by the EDR of the control condition.
All VEE bars are normalized by their corresponding EDR.
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Figure 3.7: Smoothed empirical distributions of the distances between the test points
of the unreachable experiments and the training data. More distant states are handled
less well by the agents, suggesting they are unable to generalize counterfactually.

standard behavior. Alternatively, one could imagine a network that performs poorly

by conflating states that are meaningfully different. Using the activations of the last

layers, both the relative distances between each state’s internal representation and its

Q-value can be depicted in a two dimensional graph using t-SNE [55] as in Fig. 3.8.

The perturbed states, such as FLS, ER, ALS, stayed close together in terms of their

internal representations. However, each state’s temporal correlation seems to play a

more important role in combining each state’s internal representation. That implies

that the network is correctly keeping different states different, but is struggling to

relate novel states to those it is more familiar with.

Training Agents for Generalization. We take inspiration from well-established

methods in supervised learning; increasing training set size, broadening the support
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Figure 3.8: t-SNE plot of a single run of a trained agent. The plot shows the
relationship between the relative distances of each input state’s internal representation
and each state’s Q-value. Although perturbed states stay close together in terms
of their internal representations, each state’s temporal correlation seems to play a
dominant role is determining the representation.

of the training distribution, and reducing model capacity. We propose the following

analogs to each of these methods, respectively; increasing the number of training

episodes, introducing additional exploration, and removing layers and nodes.

Our experiments indicate that: (1) naïvely increasing the number of training

episodes until training set performance converges does not help generalization; (2)

some reductions to model capacity induce improvements to generalization; and (3)

increasing exploration and otherwise diversifying training experience results in more

generalized policies. These results are shown in Fig. 3.9.

Training Episodes. While increasing training time clearly increases the expected
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Figure 3.9: Average expected discounted returns (EDR) from various unreachable
states for each of the trained agents.

discounted return in the control condition, shorter training times appear to contribute

to increased generalization ability. This increase is minimal, but it does illustrate that

naïvely increasing training time until converge of training rewards may not be the best

strategy for producing generalized agents. The mechanism for this finding is akin to

overfitting as the network deploys more and more of its capacity to on-policy states.

Model Capacity. Of the reductions to model capacity, we find that shrinking the

size of the fully-connected layers results in the greatest increase in generalization

performance across perturbations. Reducing the number of convolutional layers also

results in improvements in generalization performance, particularly for the enemy

perturbation experiments.

Exploration Starts. We find that increasing the diversity of training experience

has the greatest effect on generalization performance, particularly for the agent with

50 random actions. This agent experiences almost a factor of two increase in expected

discounted return for human starts and all of the unreachable-state experiments. This
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agent outperforms the baseline agent in every condition. Of particular interest is

the agent’s performance on the enemy shift experiments, where the agents’ expected

discounted return approaches the reward achieved by an agent trained entirely in that

scenario. While the agents with increased exploration demonstrate a clear improvement

in generalization ability over the baseline, it is not consistent with their ability to

achieve high reward with the alternative enemy-movement protocol after retraining.

Saliency Maps. Using Greydanus et al. [26]’s method, the value function (V),

advantage function (A) and KL divergence (KL) values are depicted in heatmaps.

Baseline and ALS states are compared in Fig. 3.10. Note that the agent itself has

high saliency, which is appropriate. However, in many cases the score appears more

salient than the enemies, which is a clear sign of memorization.
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(a) At frame 30.

(b) At frame 86.

(c) At frame 127.

Figure 3.10: Saliency maps in Amidar. The value function (V), advantage function
(A) and KL divergence (KL) values are depicted in heatmaps. Baseline and ALS
states are compared.



Chapter 4

Policy Comparison using Value

Decomposition

In this chapter, I propose a novel method for decomposing the agent’s value into the

accumulated reward obtained before vs. after visiting a state and use this metric to

select an important decision state where switching to a different policy would result

in the most impact in the overall value of starting states (see Fig. 4.1). Based on this

analysis, we can generate an explanation that makes use of the identity of the most

influential state.

4.1 Background

This section provides some background information that my approach builds on.

42
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Figure 4.1: A diagram showing an agent’s decision change at the intermediate state
s∗ starting from s0.

4.1.1 Occupancy Frequency

Khan et al. [44] first developed a method to explain an RL agent in a MDP using the

occupancy frequency concept. Their method distinguishes the most influential sets of

states where each set has the same reward value. Templates for explanations can then

be generated including an occupancy frequency for that set of states and factors of

states that are generalized from the set of states.

Our approach is built upon this framework and adds an algorithm to compare two

different policies and find a state such that switching to a different contrasting policy

from this state most impacts the overall utility of an agent, Es0∈S0 [V (s0)].

Dodson et al. [17] also extends the work of Khan et al. [44] in the area of academic

advising by making use of an MDP and the occupancy frequency concept to generate

template-based natural language explanations.

4.1.2 Counterfactual Reasoning

According to Pearl and Mackenzie [69], causality plays an essential role in human

explanation. In this dissertation, we situate an agent in a counterfactual situation
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where it follows a policy π0 until it reaches a state s∗ and then we run a test to either

switch to a different policy π1 or to stay with the original policy. This switch allows

us to compare two different policies, highlighting which state most affects the value

after this policy change.

In term of comparing two different policies and finding an important decision point,

Gottesman et al. [25] take a similar approach and introduce an influence function.

However, their approach mostly concentrates on removing a single transition instead

of the change of an entire policy after visiting a certain state.

4.2 Methods

This section describes our algorithmic approach.

4.2.1 Occupancy Frequency

Definition 4.2.1 (State Occupancy Function). The state occupancy of a state s ∈ S

starting from s0 following a policy π is defined by

Ks0,π(s′) =
∞∑
t=0

γtP (st+1 = s′ | s0, π).

This state occupancy function K can be interpreted as a sum of all probability

values at all steps discounted by γt as it marches away from the start state s0. An

interesting aspect of this function is that similar to value and Q functions it can also

be calculated by using dynamic programming. In other words, it can be computed by
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iterating a recurrence relation.

Lemma 4.2.1 (State Occupancy Recurrence Relation). Let K be a state occupancy

function following a policy π starting from a state s0, then the following holds:

Ks0,π(s′) =
∑
s

T (s′ | s, π) (P (s0 = s | s0) + γKs0,π(s)) .

Proof. We first start with the definition of the state occupancy function

Ks0,π(s′) =
∞∑
t=0

γtP (st+1 = s′ | s0, π).

Conditioning on a previous state using the Markov property,

=
∞∑
t=0

γt
∑
s

P (st+1 = s′ | st = s, s0, π)P (st = s | s0, π)

=
∞∑
t=0

γt
∑
s

T (s′ | s, π)P (st = s | s0, π)

= T (s′ | s0, π)P (s0 | s0) +
∞∑
t=1

γt
∑
s

T (s′ | s, π)P (st = s | s0, π).

By factoring out γ and reparameterizing the first summation,

= T (s′|s, π)P (s0 | s0) + γ
∞∑
t=1

γt−1
∑
s

P (st = s|s0, π)T (s′|s, π)

= T (s′|s, π)P (s0 | s0) + γ

∞∑
t=0

γt
∑
s

P (st+1 = s|s0, π)T (s′|s, π),

we can rearrange the summations,

= T (s′|s, π)P (s0 | s0) +
∑
s

T (s′|s, π)γ
∞∑
t=0

γtP (st+1 = s|s0, π).
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Using the definition of K,

= T (s′|s, π)P (s0 | s0) +
∑
s

T (s′|s, π)γKs0,π(s)

=
∑
s

T (s′|s, π) (P (s0 = s | s0) + γKs0,π(s)) .

Although trivially P (s0 | s0) = 1, we leave it in the proof to avoid confusion since it

gets added again at the last step to the summation.

Next, we show that this system of equations has a unique solution and that it can

be approximated accurately via repeated application of a value-iteration-like operator.

Theorem 4.2.1 (Contraction). If K is a function mapping states to values, define Z,

an operator on such functions, as follows:

ZK(s′) =
∑
s

T (s′|s, π)(P (s0 = s|s0) + γK(s).

Then, for any occupancy frequency function K1 or K2, the operator Z is a contrac-

tion mapping in the total variation
∑

s |ZK1(s)− ZK2(s)| with the index of contract

γ. This implies, by Banach’s fixed point theorem, that Z has a unique fixed point and

that iterating Z converges to this fixed point at a rate of γ.

Proof. We only need to prove the Z is a contraction mapping and the rest follows
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naturally:∑
s′

|ZK1(s
′)− ZK2(s

′)| =
∑
s′

|(
∑
s

T (s′|s, π)(P (s0 = s|s0) + γK1(s))−

(
∑
s

T (s′|s, π)(P (s0 = s|s0) + γK2(s))|

≤
∑
s′

∑
s

T (s′|s, π)γ|K1(s)−K2(s)|

=γ
∑
s

|K1(s)−K2(s)|
∑
s′

T (s′|s, π)

=γ
∑
s

|K1(s)−K2(s)|.

That is, the new total variation after applying the operator Z to K1 and K2 is no

more than γ times the total variation between K1 and K2.

We can define the overall occupancy frequency function over a set of start states

S0 by applying the expectation to the previous occupancy frequency function on each

single start state s0 ∈ S0.

Definition 4.2.2 (Overall Occupancy Frequency). For any s ∈ S, an overall occu-

pancy frequency function of a policy π can be defined as

Kπ(s) = E
s′∈S0

[
Ks′,π(s)

]
.

Lemma 4.2.2 (Overall Occupancy Frequency Recurrence Relation). Let K be an

overall state occupancy function following a policy π start from a set of states S0.

Then, the following holds:

Kπ(s′) =
∑
s

T (s′ | s, π) (P (s0 = s) + γKπ(s)) .
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Proof.

Kπ(s′) = E
s′′∈S0

[
Ks′′,π(s′)

]
=
∑
s′′∈S0

P (s0 = s′′)Ks′′,π(s′)

=
∑
s′′∈S0

P (s0 = s′′)

(∑
s

T (s′ | s, π)
(
P (s0 = s | s′′, π) + γKs′′,π(s)

))

=
∑
s

T (s′ | s, π)(∑
s′′∈S0

P (s0 = s′′ | π)P (s0 = s | s′′, π) + γ
∑
s′′∈S0

P (s0 = s′′ | π)Ks′′,π(s)

)

=
∑
s

T (s′ | s, π)(∑
s′′∈S0

P (s0 = s′′ | π)P (s0 = s | s′′, π) + γKπ(s)

)
.

The start probability P (s0 = s | s′′, π) is 1 if s′′ = s and 0 otherwise. If s /∈ S0 the first

term is always 0:

=
∑
s

T (s′ | s, π) (P (s0 = s |π) + γKπ(s)) .

It is trivial to prove that the overall occupancy frequency recurrence relation is

also a contraction mapping. Therefore, the function always has a fixed point and

converges. The iteration algorithm in Alg. 1, which is similar to the value iteration

algorithm, works on the occupancy frequency function both on a single start state s0

and a set of start states S0 since its main structure is the same.

One key benefit in using the occupancy frequency function is that the value of
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Algorithm 1 Overall Occupancy Frequency Iteration Algorithm
Input: a policy π, transition function T , distribution of start states, P (s0 = s),
s ∈ S0, and a threshold θ which determines the accuracy of the approximation.
Output: K ≈ K∗

procedure OccupancyFunction(π, T, P (s0 = s), θ)
repeat

Initialize all K(s)s with 0
∆← 0
for all s ∈ S do

k ← K(s)
K(s)←

∑
s T (s

′ | s, π) (P (s0 = s) + γK(s))
∆ = max(∆, |k −K(s)|)

end for
until ∆ < θ
return K

end procedure

a start state can be represented as a product of reward and occupancy frequency

functions. For simplicity, we can define the reward function to map a state to a value

and as defined as the single value received at the time an agent enters that state.

In this dissertation, we use R(s) notation to represent this function compared to

R(s, a, s′) notation in which a reward function maps state, action, and next action

triples to a reward value.

Lemma 4.2.3. The value of a start state s0 is a sum of the product of the reward R

and occupancy frequency function Ks0,π over all states:

V π(s0) =
∑
s∈S

[R(s) ·Ks0,π(s)] .

An expected value on a set of start states S0 is also a sum over all states of the product
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of a reward function R and an overall occupancy frequency function Kπ.

E
s∈S0

[V π(s)] =
∑
s∈S

[R(s) ·Kπ(s)] .

Proof. For the value of a start state s0,

V π(s0) =E

[
∞∑
t

γtrt | s0, π

]

=
∞∑
t

γt E [rt | s0, π]

=
∞∑
t

γt
∑
s

(R(s) · P (st+1 = s | s0, π))

=
∑
s

(
R(s) ·

∞∑
t

γtP (st+1 = s | s0, π)

)

=
∑
s

(R(s) ·Ks0,π(s)) .

For the overall value of a set of start states S0, using the above proof,

E
s∈S0

[V π(s)] = E
s∈S0

[∑
s

(R(s) ·Ks0,π(s))]

]

=
∑
s′∈S0

P (s0 = s′)

(∑
s

(R(s) ·Ks0,π(s))]

)

=
∑
s

(
R(s) ·

(∑
s′∈S0

P (s0 = s′) ·Ks0,π(s)

))

=
∑
s

(R(s) ·Kπ(s)) .
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Figure 4.2: The value of a start state s0 can be decomposed into the anterior and posterior
values with respect to a state s∗.

4.2.2 Value Decomposition

We let Dπ be the set of all trajectories that can be produced by the policy π. A

trajectory τ consists of a series of state, action, and next-state pairs (s, a, s′), τ =

{(sτi , aτi , s′τi }Li=0. If, for any trajectory τ and a state s∗ , there is a smallest i such that

sτi = s∗ then that i is defined as iτ (s∗). If there is no such i, then iτ (s∗) is ∞. If we

do not specify τ , it is implied that such τ is sampled by applying the policy π to an

environment.

Definition 4.2.3 (Anterior Occupancy Function). The anterior state occupancy of a

state s ∈ S with respect to an intermediary state s∗ is defined by

Ls0,π
s∗ (s) =

∞∑
t=0

γtPπ(st+1 = s, t < i(s∗) | s0).

Lemma 4.2.4 (Anterior Occupancy Recurrence Relation). Let L be an anterior state

occupancy function following a policy π with respect to a starting state s0 and an
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intermediary state s∗, then the following holds

Ls0,π
s∗ (s′) =

∑
s∈S\{s∗}

T (s′ | s, π) (P (s0 = s | s0) + γLs0,π
s∗ (s)) .

Proof.

Ls0,π
s∗ (s′) =

∞∑
t=0

γtPπ(st = s′, t < i(s∗) | s0)

=
∞∑
t=0

γt
∑

s∈S\{s∗}

Pπ(st+1 = s′ | st = s, t < i(s∗), s0)Pπ(st = s, t < i(s∗) | s0).

Given that the transition happens before reaching s∗, the transition itself is not

dependent on the fact that it happens before s∗ and it starts with s0. Therefore,

Pπ(st+1 = s′ | st = s, t < i(s∗), s0) = T (s′|s, π). Returning to the derivation, Ls0,π
s∗ (s′)

=
∞∑
t=0

γt
∑

s∈S\{s∗}

T (s′|s, π)Pπ(st = s, t < i(s∗) | s0).

Since the probability of a starting state does not depend on the policy, P (s0 = s, t <

i(s∗) | s0) = P (s0 = s | s0) and the summation is not counted on s∗,

=
∑

s∈S\{s∗}

T (s′|s, π)P (s0 = s | s0) +
∞∑
t=1

γt
∑

s∈S\{s∗}

T (s′|s, π)Pπ(st = s, t < i(s∗) | s0)

=
∑

s∈S\{s∗}

T (s′|s, π)P (s0 = s | s0) +
∞∑
t=1

γt
∑

s∈S\{s∗}

T (s′|s, π)Pπ(st = s, t < i(s∗) | s0)

=
∑

s∈S\{s∗}

T (s′|s, π)P (s0 = s | s0) +
∑

s∈S\{s∗}

T (s′|s, π)
∞∑
t=1

γtPπ(st = s, t < i(s∗) | s0)
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=
∑

s∈S\{s∗}

T (s′|s, π)P (s0 = s | s0) +
∑

s∈S\{s∗}

T (s′|s, π)γ
∞∑
t=0

γtPπ(st+1 = s, t < i(s∗) | s0).

By the definition of L,

=
∑

s∈S\{s∗}

T (s′|s, π)P (s0 = s | s0) +
∑

s∈S\{s∗}

T (s′|s, π)γLs0,π
s∗ (s′)

=
∑

s∈S\{s∗}

T (s′ | s, π) (P (s0 = s | s0) + γLs0,π
s∗ (s)) .

Definition 4.2.4 (Posterior Occupancy Function). The posterior state occupancy of

a state s ∈ S given the start state s0 and the intermediary state s∗ is defined by

M s0,π
s∗ (s) =

∞∑
t=0

γtPπ(st+1 = s, t ≥ i(s∗) | s0).

Corollary 4.2.1. Given the anterior and posterior state occupancy with respect to

the start state s0 and the intermediary state s∗, the following holds:

Ks0,π(s′) = Ls0,π
s∗ (s′) +M s0,π

s∗ (s′).

Proof.

Ls0,π
s∗ (s′) +M s0,π

s∗ (s′) =
∞∑
t=0

γtPπ(st+1 = s, t < i(s∗) | s0) +
∞∑
t=0

γtPπ(st+1 = s, t ≥ i(s∗) | s0)

=
∞∑
t=0

γt (Pπ(st+1 = s, t < i(s∗) | s0) + Pπ(st+1 = s, t ≥ i(s∗) | s0))
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Since P (A,B) + P (A,¬B) = P (A),

=
∞∑
t=0

γtPπ(st+1 = s | s0)

= Ks0,π(s′).

Lemma 4.2.5 (Posterior Occupancy Recurrence Relation). Let M be a posterior

state occupancy function following a policy π with respect to a starting state s0 and an

intermediary state s∗, then the following two equations hold:

If any intermediary state is not in S0, then

M s0,π
s∗ (s′) = γT (s′ | s∗, π)Ls0,π

s∗ (s∗) + γ
∑
s

T (s′ | s, π)M s0,π
s∗ (s).

For any intermediary state in S, then

M s0,π
s∗ (s′) = T (s′ | s∗, π) (P (s0 = s′ | s0) + γLs0,π

s∗ (s∗)) + γ
∑
s

T (s′ | s, π)M s0,π
s∗ (s).
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Proof. From Corollary 4.2.1,

M s0,π
s∗ (s′) =Ks0,π(s′)− Ls0,π

s∗ (s′).

By the definitions of both K and L,

=
∑
s

T (s′ | s, π)(P (s0 = s | s0, π) + γKs0,π(s))

−
∑

s∈S\{s∗}

T (s′ | s, π)(P (s0 = s | s0, π) + γLs0,π
s∗ (s))

=T (s′ | s∗, π)(P (s0 = s∗ | s0, π) + γKs0,π(s∗))

+
∑

s∈S\{s∗}

T (s′ | s, π)γ(Ks0,π(s)− Ls0,π
s∗ (s))

=T (s′ | s∗, π)(P (s0 = s∗ | s0, π) + γKs0,π(s∗))

+
∑

s∈S\{s∗}

T (s′ | s, π)γM s0,π
s∗ (s)

=T (s′ | s∗, π)(P (s0 = s∗ | s0, π) + γLs0,π
s∗ (s∗) + γ(Ks0,π(s∗)− Ls0,π

s∗ (s∗)))

+
∑

s∈S\{s∗}

T (s′ | s, π)γM s0,π
s∗ (s)

=T (s′ | s∗, π)(P (s0 = s∗ | s0, π) + γLs0,π
s∗ (s∗)) +

∑
s∈S

T (s′ | s, π)γM s0,π
s∗ (s).

Overall frequency functions can be defined for anterior and posterior functions.

Definition 4.2.5 (Overall Anterior and Posterior Occupancy Frequency). For any

s ∈ S and s∗ ∈ S, an overall anterior occupancy frequency function of a policy π can
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Algorithm 2 Overall Anterior Occupancy Frequency Iteration Algorithm
Input: a policy π, the transition function T , the distribution of start states, P (s0 = s),
s ∈ S0, an intermediary state s∗, and a threshold θ that determines the accuracy of
the approximation.
Output: L ≈ L∗

procedure AnteriorOccupancy(π, T, P (s0 = s), s∗, θ)
repeat

Initialize all L(s)s with 0
∆← 0
for all s ∈ S \ {s∗} do

l← L(s)
L(s)←

∑
s T (s

′ | s, π) (P (s0 = s) + γL(s))
∆ = max(∆, |l − L(s)|)

end for
until ∆ < θ
return L

end procedure

be defined as

Lπ
s∗(s) = E

s′∈S0

[
Ls′,π
s∗ (s)

]
.

For any s ∈ S and s∗ ∈ S, an overall posterior occupancy frequency function of a

policy π can be defined as

Mπ
s∗(s) = E

s′∈S0

[
M s′,π

s∗ (s)
]
.

Lemma 4.2.6 (Overall Anterior and Posterior Occupancy Frequency Recurrence

Relation). Let L be an overall anterior occupancy frequency function following a policy

π starting from a set of states S0 with respect to an intermediary state s∗. Then, the

following holds:

Lπ
s∗(s

′) =
∑

s∈S\{s∗}

T (s′ | s, π) (P (s0 = s) + γLπ
s∗(s)) .
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Algorithm 3 Overall Posterior Occupancy Frequency Iteration Algorithm
Input: a policy π, the transition function T , the distribution of start states, P (s0 = s),
s ∈ S0, an intermediary state s∗, an anterior occupancy frequency function w.r.t. s∗
Lπ
s∗ , and a threshold θ which determines the accuracy of the approximation.

Output: M ≈M∗

procedure PosteriorOccupancy(π, T, P (s0 = s), s∗, Lπ
s∗ , θ)

repeat
Initialize all M(s)s with 0
∆← 0
for all s ∈ S do

m←M(s)
M(s)← T (s′ | s∗, π) (P (s0 = s∗) + Lπ

s∗(s
∗)) +

∑
s T (s

′ | s, π)γM(s)
∆ = max(∆, |m−M(s)|)

end for
until ∆ < θ
return M

end procedure

Let M be an overall posterior occupancy frequency function following a policy π

starting from a set of states S0 with respect to an intermediary state s∗. Then, the

following holds:

If any intermediary state is or is not in S0 then,

Mπ
s∗(s

′) = T (s′ | s∗, π) (P (s0 = s∗) + γLπ
s∗(s

∗)) + γ
∑
s

T (s′ | s, π)Mπ
s∗(s).

If any intermediary state is not in S0 then,

Mπ
s∗(s

′) = γT (s′ | s∗, π)Lπ
s∗(s

∗) + γ
∑
s

T (s′ | s, π)Mπ
s∗(s).

Proof. Proofs are similar to the proof of Lemma 4.2.2.

The algorithms for the above recurrence relations are in Alg. 2 and Alg. 3, respec-

tively.
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Before defining the anterior and posterior values, we revisit the meaning of the

equation 1t<1τ (s∗). It is 1 if the current step t precedes reaching s∗ or if s∗ is not

included in τ . Otherwise, it is 0.

Definition 4.2.6 (Anterior and Posterior Values). Given a start state s0 and inter-

mediary state s∗, the expected accumulated reward before reaching s∗ is defined as the

anterior value:

V L
s∗,π(s0) = E

τ∼Dπ

iτ (s∗)∑
t=0

γtrτt | s0, π

 .

In other words, using the above 1 notation,

V L
s∗,π(s0) = E

τ∼Dπ

[
∞∑
t=0

γtrτt · 1t≤1τ (s∗) | s0, π

]
.

Since the posterior value is counting rewards in the exactly opposite situation, it is

defined as

V M
s∗,π(s0) = E

τ∼Dπ

[
∞∑
t=0

γtrτt · 1t>1τ (s∗) | s0, π

]
.

Corollary 4.2.2 (Value Decomposition). Using the above definitions, we can easily

conclude that

Vπ(s0) = V L,s∗

π (s0) + V M,s∗

π (s0).

Proof.

V L
s∗,π(s0) + V M,s∗

π (s0)
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= E
τ∼Dπ

[
∞∑
t=0

γtrτt · 1t≤1τ (s∗) | s0, π

]
+ E

τ∼Dπ

[
∞∑
t=0

γtrτt · 1t>1τ (s∗) | s0, π

]

Since 1t>1τ (s∗) = 1− 1t≤1τ (s∗),

= E
τ∼Dπ

[
∞∑
t=0

γtrτt ·
(
1t≤1τ (s∗) + (1− 1t≤1τ (s∗))

)
| s0, π

]

= E
τ∼Dπ

[
∞∑
t=0

γtrτt · | s0, π

]
= Vπ(s0).

Lemma 4.2.7. Given anterior and posterior occupancy frequency functions L and M

with respect to a start state s0 and an intermediary state s∗, an anterior and posterior

value with respect to s0 and s∗ can be represented as

V L
s∗,π(s0) =

∑
s∈S

[R(s) · Lπ,s0
s∗ (s)] ,

V M
s∗,π(s0) =

∑
s∈S

[R(s) ·Mπ,s0
s∗ (s)] .

The overall anterior and posterior values can also be given as

E
s∈S0

[
V L
s∗,π(s0)

]
=
∑
s∈S

[R(s) · Lπ
s∗(s)] ,

E
s∈S0

[
V M
s∗,π(s0)

]
=
∑
s∈S

[R(s) ·Mπ
s∗(s)] .
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Proof.

V L
s∗,π(s0) = E

τ∼Dπ

[
∞∑
t=0

γtrτt · 1t≤1τ (s∗) | s0, π

]

=
∞∑
t=0

γt E
τ∼Dπ

[
rτt · 1t≤1τ (s∗) | s0, π

]
=

∞∑
t=0

γt
∑
s

R(s) · Pπ(st+1 = s, t < i(s∗) | s0)

=
∑
s

[
R(s) ·

∞∑
t=0

γtPπ(st+1 = s, t < i(s∗) | s0)

]

=
∑
s

[R(s) · Lπ,s0
s∗ (s)] .

The proof for V M
s∗,π(s0) is similar to the above. The overall anterior and posterior value

proofs are also similar to lemma 4.2.3.

The different M value can be calculated for a counterfactual policy change from

π0 to π1 when the state s∗ is reached if we use the L from the policy π0:

M s0,π0,π1
s∗ (s′) = γT (s′ | s∗, π1(s

∗))Ls0,π0
s∗ (s∗) + γ

∑
s

T (s′ | s, π1(s))M
s0,π0,π1
s∗ (s). (4.1)

4.2.3 Contrasting Different Policies

Our approach to explaining RL agents contrasts a policy π0 with another policy π1.

Specifically, we want to answer the question of why an agent should choose its preferred

policy π0 over a contrasting policy π1. The comparison of two polices is achieved by

situating an agent in a counterfactual situation. We run an agent from a start state

or a set of start states and let it follow its preferred policy π0 until a significant state
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Figure 4.3: Contrasting two different policies via the value decomposition with respect to a
state s∗.

s∗ is reached. We compare the behavior of an agent that continues with its π0 policy

to one that switches at that point to the contrasting policy π1.

If we revisit the do operator in Chapter 2 as in Fig. 2.1, the controlled variable

X can be set to X = π0 → π0 or X = π0 → π1. Then, we can set Y to be

V M
s∗,π0,π0

or V M
s∗,π0,π1

and observe E [Y | do(X = π0 → π0)] and E [Y | do(X = π0 → π1)]

to determine the cause of possible outcomes.

The value decomposition approach from the previous section can efficiently compare

the value of the original and counterfactual policy. Both policies’ expected values can

be calculated via:

Vs∗,π0,π0(s0) = V L
s∗,π0

(s0) + V M
s∗,π0,π0

(s0), (4.2)

Vs∗,π0,π1(s0) = V L
s∗,π0

(s0) + V M
s∗,π0,π1

(s0). (4.3)
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Looking into these value differences, we are comparing the impact on the start

state value of switching policies, Is∗,π0,π1(s0), after an agent first visits the intermediate

state s∗. This impact is measured by

Is∗,π0,π1(s0) = Vs∗,π0,π0(s0)− Vs∗,π0,π1(s0) = V M
s∗,π0,π0

(s0)− V M
s∗,π0,π1

(s0), (4.4)

E
s0∈S0

[Is∗,π0,π1(s0)] = E
s0∈S0

[
V M
s∗,π0,π0

(s0)− V M
s∗,π0,π1

(s0)
]
. (4.5)

The expectation of the impact over all the start states measures the overall

impacts of switching policies with respect to a intermediate state. To generate a

useful explanation, we want to find the state s∗ that maximizes this impact, s∗ =

argmaxs Es0∈S0 [Is,π0,π1(s0)]. The state is the one that, if an agent changes from π0 to

an alternative policy π1 upon reaching that state, it will have the most impact on the

overall performance of an agent.
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Algorithm 4 Impact Algorithm
Input: a base policy π0, a contrastive policy π1, the transition function T , the
distribution of start states, P (s0 = s), s ∈ S0, and a threshold θ that determines the
accuracy of the approximation.
Output: s∗,E [Is∗,π0,π1 ]

procedure Impact(π0, π1, T, P (s0 = s), θ)
m← −∞
for all s ∈ S do

Lπ0
s ← AnteriorOccupancy(π0, T, P (s0 = s), s, θ)

Mπ0,π0
s ← PosteriorOccupancy(π0, T, P (s0 = s), s, Lπ0

s , θ)
Mπ0,π1

s ← PosteriorOccupancy(π1, T, P (s0 = s), s, Lπ0
s , θ)

E [Is,π0,π1 ]←
∑

s′ (R(s′) ·Mπ0,π0
s (s′))−

∑
s′ (R(s′) ·Mπ0,π1

s (s′))
if m < E [Is,π0,π1 ] then

m← E [Is,π0,π1 ]
s∗ ← s

end if
end for
return s∗,m

end procedure



Chapter 5

Experiment and Evaluation

This chapter demonstrates the proposed method using an experiment on the 4× 3

GridWorld domain introduced in Russell and Norvig’s book [74] and the game of

Blackjack. In these domains, we look at three different methods for choosing an

influential state to use in our explanation.

5.1 Metrics

The choice of metric is key for selecting a meaningful state to build an explanation

around. Here are several options.

64
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5.1.1 Maximum Q-value Difference

The state with the maximum Q-value difference between the two policies π0 and π1 is:

sq = argmax
s
|Qπ0(s, π0(s))−Qπ0(s, π1(s))| .

This method answers the question: Which state would have its value change the

most if the agent switched from following π0 to following the action proposed by π1

for one step at that state? As Q-values encode a simple kind of counter-factual, and

Q-values are produced in the context of many RL algorithms, this method is a very

natural one to consider. A drawback of this method, however, is it does not take into

account where the agent actually starts: s0 (or a distribution over such states). A

state could have very different Q-values, but be so unlikely to be reached that its

hypothetical difference is moot.

5.1.2 Maximum Value Difference

The state with the maximum value difference is:

sv = argmax
s
|Vπ0(s)− Vπ1(s)| .

This method chooses the state where the two policies differ the most in terms of their

state values V . The value of a state Vπ(s) is the expected discounted return starting

from s and following π. The maximum value difference is a direct and simple way

to select a state that is very different for the two different policies—it’s the place in

the state space where following the policies leads to the most extreme difference in
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value. It is like the maximum Q-value difference except it considers switching behavior

indefinitely, instead of for the single step used in Q values. As such, it provides a

stronger contrast and a more meaningful counter-factual. Like the maximum Q-value

difference, however, it does not consider the likelihood that the state is reached,

resulting in a potentially misleading choice of state.

5.1.3 Impact Using Anterior and Posterior Occupancy Fre-

quencies

The state with the most impact on the start-state value is:

s∗ = argmax
s

E
s0∈S0

[Is,π0,π1(s0)] .

Our proposed approach evaluates the difference resulting from following π0 until

s is reached, and then following π1 after that point. Although marginally more

computationally complex than the prior two methods, the main advantage of this

impact measure is that it accounts for the overall value difference at the start state,

and not just what happens when starting at the intermediate state. In this sense, it

is a much better choice as the answer to the why question of how changing policies

impacts the results.
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Figure 5.1: GridWorld result. The diagram first shows the status of the states, s0, s∗ and
two terminal states, by showing the grid and the agents’ locations. It shows the occupancy
frequency grids before and after the state s∗ and two contrasting result graphs in terms of
the probability of ending in two different states, goal (green) and lava (red).
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Figure 5.2: GridWorld policies. (a) An optimal policy π0 with R(·, ·, s) = −0.04, ∀s ∈ S, s /∈
ST . (b) Shortest path policy π1 with the same R. (c) A diagram showing the slip probability
of an action.

5.2 GridWorld

The GridWorld is fully observable and has four actions, Up, Down, Left, and Right.

For each action, an agent will go to an intended state with the probability 0.8 and

will move at right angles to the original direction for the rest. Taking each step at
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Figure 5.3: A comparison of three evaluation metrics. (a) Q-value difference. (b) Value
difference. (c) Impact using anterior and posterior occupancy frequencies.
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Figure 5.4: The anterior and posterior occupancy frequencies of the state s∗ = (1, 0) (a)
Ls0,π0
s∗ (s). (b) M s0,π0,π1

s∗ (s). (c) M s0,π0,π1
s∗ (s).

non-terminal states, the agent receives the reward −0.04 and, at two terminal states,

the goal and lava, it receives +1 or −1, respectively as in Fig. 5.2 (c).

The polices for the comparison are depicted in Fig. 5.2 (a) and (b). The optimal

policy is generated from the value iteration method and the shortest path policy is

generated to minimize the total number of steps before reaching the goal state with

the reward +1. The occupancy frequencies L and M can also be generated using

Algorithm 2 and 3 and the calculated L and M for the state (1, 0) are depicted in

Fig. 5.4.

The results for the three metrics are shown in Fig. 5.3. Metrics (A) and (B) choose
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the same state, (2, 1) and the impact metric chooses a different state. For (A), we can

explain the result as:

If an agent starts at (2, 1), the difference of expected returns between the

optimal policy and that shortest path policy is maximized with a difference

of 0.066.

For (B), we can explain the result as:

If an agent starts at (2, 1), the difference of expected returns between

taking the action Left suggested by the optimal policy and taking the

action Up suggested by the shortest path policy (then continuing with the

optimal policy) is maximized with a difference of 0.081.

The proposed Impact metric chooses a different state for its explanation, (1, 0). We

can generate the following explanation using our occupancy frequencies and factoring

states according by [44]:

If an agent switches from the optimal policy to the shortest path policy at

the state (1, 0), the difference in value at the start state (0, 0) is maximized

with a difference of 0.029.

Furthermore, details about the likelihood of the different terminal states provide

additional insight. See Fig. 5.1.
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Figure 5.5: Blackjack optimal policy. Yellow color indicates stick action and violet color
indicates hit action.

5.3 Blackjack

Blackjack is a card game played in casinos. The main goal of the game is to obtain a

point total higher than the dealer without exceeding the total of 21. Ace cards can be

worth either 1 or 10 when summing up the total points, whichever is most beneficial.

At each step, the player can either choose hit or stand. A player that chooses to hit

receives an additional card. A player choosing to stand receives no more cards and
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Figure 5.6: Blackjack result. The diagram first shows the status of the states,
s0(0, 0), s

∗(16, 5) and two terminal states, by showing the player’s and dealer’s sums. It
shows the occupancy frequency graphs before and after the state s∗ and two contrasting
result graphs in terms of the probability of ending in five different states.

the dealer plays until the total sum is at least 17. For this experiment, we compared

the optimal policy (see Fig. 5.5) computed by value iteration to what would happen

if the player adopted the dealer’s policy. The highest impact state for this pair of

policies is (16, 10), where the player has the sum 16 and the dealer has the sum 10.

Below is an explanation generated for this situation.

If an agent switches from the optimal policy to the dealer policy at the

state (16, 5), the difference in value at the start state (0, 0) is maximized

with a difference of 0.029.

It is also possible to provide more visual representation of an explanation by

showing the graphs with more data as in Fig. 5.6.



Chapter 6

Conclusion

The two different parts of the work presented in this dissertation seek to explain the

behavior of reinforcement-learning agents in very different ways. However, the methods

do share one main theme: counterfactual reasoning. Our main experimental setting is

depicted in Fig. 6.1. The first part of my work mostly focused on experimenting on

changing the environmental features Φ(s) to see how their outcomes E [V | do(ϕ(s))]

differ. The second part of the work delves more into the effect of varying the policy.

It formally assesses different policies Π and finds a state that supports an important

explanation: whether a policy change at that state can be the cause of a different

outcome, E [V | do(π)]. This final chapter elaborates the implications and limitations

of these two methods as well as potential research questions that arise based on these

approaches.

The first part of this dissertation delves into the problem of generalization in

72
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V

Π

Φ(s)

Figure 6.1: Two different main causes in an agent’s decision making. Environmental
features Φ(s) and policies Π can affect the overall outcome V of an agent.

reinforcement learning. It started with a belief that the high-performing learned

agents using the current state-of-the-art algorithms have a general understanding

of their environments and the ability to adapt to different situations and therefore

behave appropriately in counterfactual situations. In such a setting, we can explain

an agent’s decision in counterfactual situations by contrasting outcomes. That is

because such agents are expected to behave in a way that makes outcomes maximally

beneficial to the agents. However, our results suggest that such agents perform poorly

in unfamiliar environments, especially when they are not only pixel-wise different, but

also contextually very different.

To better distinguish different sets of states that are more often or seldom visited

during learning, we defined a new taxonomy classifying reachable, unreachable, on-

policy, and off-policy states. We proposed a set of novel practical methods for evaluating

generalization based on these new sets of states as a new benchmark task for deep

RL agents. These results bring us to a question: What is the extent to which deep

RL agents learn generalized representations? Our conclusion is that deep RL agents

need not learn generalized representations, even when they perform well overall. To
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support the claim that agents can learn general representations, more experimentation

and analysis is necessary.

Subsequent to this work, researchers have attempted to improve the testing of

generalization in reinforcement-learning agents and high-level representation learning.

My colleagues Tosch et al. [91] built a framework to also provide contextual variations

in two more games, Space Invaders and Breakout, in the Atari environment. Cobbe

et al. [11]’s work further explored generalization of deep RL agents using the traditional

train-and-test performance measures. Although they showed learned agents can adapt

to different stage designs, it still remains unproven that its learned representations are

high level enough to be adapted to contextual changes in their environments. Badia

et al. [4] trained an agent with one single policy to play all 57 Atari games. One might

think that it may have learned to play video games in general, but they have not

conducted a test that it can play a completely different video game beyond the 57 Atari

games used in training. We still need an architecture for which its inner components

can represent high-level human-readable notions of its environment and visualizations

of how it uses such notions in its architecture to chose an action. Research on human-

readable state abstractions can help achieve such a goal. I hope that the taxonomy of

differently trainable sets of states provided in this dissertation can help better test

different architectural approaches for designing better policy-approximation methods.

For the second part of my approach, I presented a framework for choosing a state

that has the most impact in overall value and provided detailed explanations based
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on the calculated anterior and posterior occupancy functions. This approach also

leverages the power of reasoning counterfactually, since we can assume the same

precondition and reason about the outcome based on the decision a designer can

make by continuing or switching to a different policy. This work basically extends the

previous work of Khan et al. [44] in terms of providing explanations using occupancy

frequency. In addition, my work also provides formal derivations showing that all

three occupancy frequency functions can be calculated via numerical iterations and

values of start states can be decomposed into two parts with respect to a state.

The proposed method is currently limited to be used only in finite state domains.

However, the formalization should be extensible to continuous-state domains. One

approach would be to use a human-designed discretization of states combined with a

sampling method. Another would be to make distribution approximations extended

via importance sampling.

Applying the notion of explanation to the occupancy frequency functions themselves

might also be very interesting. They contain rich contextual information on where

an agent has visited before and after reaching a certain state. Since such a state is

significant in decision-making before and after changing the policy, the whereabouts

of an agent across two different sets of time can be informative to a human user.

My work is based on the use of factored-state MDPs. Factorizations of MDP the

state space is based on classifying states based on their rewards. If human-readable

abstract states capturing the occupancy frequency functions could be added to this
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explanation process, it should be even more informative.

In conclusion, in the first part of my dissertation I focused mostly on what is

necessary to provide correct explanations and in the second part, I worked on how to

provide such explanations. This combination could be leveraged to make reinforcement-

learning agents more effective, more transparent, and more trustworthy.
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